1
|
Roddy GW, Kohli D, Niknam P, Omer ME, Chowdhury UR, Anderson KJ, Pacheco Marrero JM, Rinkoski TA, Fautsch MP. Subconjunctival Administration of an Adeno-Associated Virus Expressing Stanniocalcin-1 Provides Sustained Intraocular Pressure Reduction in Mice. OPHTHALMOLOGY SCIENCE 2025; 5:100590. [PMID: 39328825 PMCID: PMC11426120 DOI: 10.1016/j.xops.2024.100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/28/2024]
Abstract
Purpose To investigate subconjunctival administration of a single-stranded, adeno-associated virus, serotype 2, engineered to express stanniocalcin-1 with a FLAG tag (ssAAV2-STC-1-FLAG) as a novel sustained (IOP) lowering agent with a reduced ocular surface side effect profile. Design In vivo preclinical investigation in mice. Subjects C57BL/6J, DBA/2J, prostaglandin F (FP) receptor knockout mice. Methods Normotensive C57BL/6J mice were treated with a subconjunctival injection of ssAAV2-STC-1-FLAG (2 μL; 6 × 109 viral genomes [VGs]) in 1 eye and the same volume and concentration of ssAAV2-green fluorescent protein (GFP) or the same volume of phosphate-buffered saline in the fellow eye. Ocular hypertensive DBA/2J mice were subconjunctivally injected with 6 × 109 VGs of ssAAV2-STC-1-FLAG or ssAAV2-GFP. Steroid-mediated ocular hypertension was induced in C57BL/6J mice with weekly injections of dexamethasone into the conjunctival fornix, and mice were then injected subconjunctivally with 6 × 109 VGs of ssAAV2-STC-1-FLAG or ssAAV2-GFP. Prostaglandin F receptor knockout mice were injected subconjunctivally with 6 × 109 VGs of ssAAV2-STC-1-FLAG or phosphate-buffered saline. An identical vector was constructed without the FLAG tag (ssAAV2-STC-1) and evaluated in normotensive C57BL/6J mice. Intraocular pressure was assessed using the Tonolab tonometer for all experiments. Tumor necrosis factor alpha (TNFα), a marker of ocular surface inflammation, was compared between subconjunctivally delivered ssAAV2-STC-1-FLAG and other treatments including daily topical latanoprost. Main Outcome Measures Intraocular pressure assessment. Results Subconjunctival delivery of ssAAV2-STC-1-FLAG significantly reduced IOP for 10 weeks post injection in normotensive mice. Maximal IOP reduction was seen at week 3 postinjection (17.4%; 17.1 ± 0.8 vs. 14.1 ± 0.8 mmHg, P < 0.001). After the IOP-lowering effect had waned, a second injection restored the ocular hypotensive effect. Subconjunctivally delivered ssAAV2-STC-1-FLAG lowered IOP in DBA/2J mice (16.9%; 17.8 ± 2.0 vs. 14.8 ± 0.9 mmHg, P < 0.001) and steroid-mediated ocular hypertensive mice (20.0%; 19.0 ± 0.6 vs. 15.2 ± 0.7 mmHg, P < 0.001) over the experimental period. This construct also reduced IOP to a similar extent in wild-type (15.9%) and FP receptor knockout (15.7%) mice compared with the fellow eye. A related construct also lowered IOP without the FLAG tag in a similar manner. Reduction in conjunctival TNFα was seen when comparing subconjunctivally delivered ssAAV2-STC-1-FLAG to daily topical latanoprost. Conclusions Subconjunctival delivery of the STC-1 transgene with a vector system may represent a novel treatment strategy for sustained IOP reduction and improved ocular tolerability that also avoids the daily dosing requirements of currently available medications. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Gavin W. Roddy
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Darrell Kohli
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Parvin Niknam
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Mohammed E. Omer
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | | | | | | | - Tommy A. Rinkoski
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, 55905
| | | |
Collapse
|
2
|
Chen C, Wang C, Zhou X, Xu L, Chen H, Qian K, Jia B, Su G, Fu J. Nonsteroidal anti-inflammatory drugs for retinal neurodegenerative diseases. Prostaglandins Other Lipid Mediat 2021; 156:106578. [PMID: 34245897 DOI: 10.1016/j.prostaglandins.2021.106578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most common prescription drugs for inflammation, and topical NSAIDs are often used in ophthalmology to reduce pain, photophobia, inflammation, and edema. In recent years, many published reports have found that NSAIDs play an important role in the treatment of retinal neurodegenerative diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), glaucoma, pathological myopia, and retinitis pigmentosa (RP). The aim of the current review is to provide an overview of the role of various NSAIDs in the treatment of retinal neurodegenerative diseases and the corresponding mechanisms of action. This review highlighted that the topical application of NSAIDs for the treatment of retinal degenerative diseases has been studied to a remarkable extent and that its beneficial effects in many diseases have been proven. In the future, prospective studies with large study populations are required to extend these effects to clinical settings.
Collapse
Affiliation(s)
- Chen Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Chenguang Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Xuebin Zhou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Lingxian Xu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Kun Qian
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Bo Jia
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Jinling Fu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
3
|
Prostaglandin F2 Alpha Triggers the Disruption of Cell Adhesion with Cytokeratin and Vimentin in Bovine Luteal Theca Cells. Animals (Basel) 2021; 11:ani11041073. [PMID: 33918916 PMCID: PMC8069824 DOI: 10.3390/ani11041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/25/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Luteolysis is an important event in the control of the corpus luteum function in bovines. However, some aspects of the luteolytic mechanism remain unclear. We evaluated changes in cell adhesion in luteal cells during regression of corpus luteum. Bovine luteal theca cells (LTCs) were treated in vitro with Prostaglandin F2 alpha (PGF2α). Cytokeratin, vimentin and desmoplakin proteins in LTCs were disrupted by PGF2α, affecting cell adhesion. These results suggest that PGF2α plays an important function in cell adhesion during the regression of corpus luteum. Abstract Intermediate filaments (IFs) maintain cell–cell adhesions and are involved in diverse cellular processes such as cytokinesis, cell migration and the maintenance of cell structure. In this study, we investigated the influence of prostaglandin F2 alpha (PGF2α) on cytokeratin and vimentin IFs, Rho-associated protein kinase (ROCK), and cell-cell adhesion in bovine luteal theca cells (LTCs). The luteal cells were isolated from bovine corpus luteum (CL), and the LTCs were treated with 0, 0.01, 0.1 and 1.0 mM PGF2α. Cytokeratin, vimentin and desmoplakin proteins were disrupted and the ROCK protein was significantly increased in PGF2α-treated LTCs. In addition, cell–cell adhesion was significantly (p < 0.05) decreased in the PGF2α-induced LTCs compared to control group (0 mM PGF2α). In conclusion, PGF2α affected the adhesion of cell to cell via disruption of desmoplakin, cytokeratin and vimentin, additionally increasing ROCK in bovine LTCs. These results may provide a better understanding of the mechanism of bovine CL regression.
Collapse
|
4
|
Beck H, Thaler T, Meibom D, Meininghaus M, Jörißen H, Dietz L, Terjung C, Bairlein M, von Bühler CJ, Anlauf S, Fürstner C, Stellfeld T, Schneider D, Gericke KM, Buyck T, Lovis K, Münster U, Anlahr J, Kersten E, Levilain G, Marossek V, Kast R. Potent and Selective Human Prostaglandin F (FP) Receptor Antagonist (BAY-6672) for the Treatment of Idiopathic Pulmonary Fibrosis (IPF). J Med Chem 2020; 63:11639-11662. [PMID: 32969660 DOI: 10.1021/acs.jmedchem.0c00834] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare and devastating chronic lung disease of unknown etiology. Despite the approved treatment options nintedanib and pirfenidone, the medical need for a safe and well-tolerated antifibrotic treatment of IPF remains high. The human prostaglandin F receptor (hFP-R) is widely expressed in the lung tissue and constitutes an attractive target for the treatment of fibrotic lung diseases. Herein, we present our research toward novel quinoline-based hFP-R antagonists, including synthesis and detailed structure-activity relationship (SAR). Starting from a high-throughput screening (HTS) hit of our corporate compound library, multiple parameter improvements-including increase of the relative oral bioavailability Frel from 3 to ≥100%-led to a highly potent and selective hFP-R antagonist with complete oral absorption from suspension. BAY-6672 (46) represents-to the best of our knowledge-the first reported FP-R antagonist to demonstrate in vivo efficacy in a preclinical animal model of lung fibrosis, thus paving the way for a new treatment option in IPF.
Collapse
Affiliation(s)
- Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Tobias Thaler
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Daniel Meibom
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Mark Meininghaus
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Hannah Jörißen
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Lisa Dietz
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Carsten Terjung
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Michaela Bairlein
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | | | - Sonja Anlauf
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Chantal Fürstner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Timo Stellfeld
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Dirk Schneider
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kersten M Gericke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Thomas Buyck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Kai Lovis
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Uwe Münster
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Johanna Anlahr
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Elisabeth Kersten
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Guillaume Levilain
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Virginia Marossek
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Raimund Kast
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| |
Collapse
|
5
|
Aihara M, Ropo A, Lu F, Kawata H, Iwata A, Odani-Kawabata N, Shams N. Intraocular pressure-lowering effect of omidenepag isopropyl in latanoprost non-/low-responder patients with primary open-angle glaucoma or ocular hypertension: the FUJI study. Jpn J Ophthalmol 2020; 64:398-406. [PMID: 32572719 DOI: 10.1007/s10384-020-00748-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 04/08/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Omidenepag isopropyl (OMDI) is the prodrug of omidenepag, a selective, non-prostaglandin, prostanoid EP2 receptor agonist, which has been shown to lower intraocular pressure (IOP) in patients with glaucoma and ocular hypertension (OHT). This study evaluated the efficacy and safety of OMDI ophthalmic solution 0.002% in patients with primary open-angle glaucoma or OHT who were non-/low responders to latanoprost. STUDY DESIGN Open-label, multicenter, Phase 3 study (NCT02822742). METHODS Following 1-4-week washout, patients were treated with latanoprost ophthalmic solution 0.005% during an 8-week run-in period. Patients with ≤15% IOP reduction at the end of the run-in (indicating non-/low response) received OMDI 0.002% (one drop once daily for 4 weeks). The primary endpoint was the change from baseline in mean diurnal IOP at Week 4. RESULTS In total, 26 patients were treated with OMDI; two withdrew owing to lack of efficacy. The mean diurnal IOP at baseline (end of latanoprost run-in) was 23.1 mmHg (7.6% IOP reduction from end of washout) indicating non-/low response to latanoprost. After 4 weeks of OMDI treatment, mean diurnal IOP was significantly reduced from baseline (-2.99 mmHg; P < 0.0001). No serious adverse events were reported. Adverse events occurred in five patients (19.2%); adverse drug reactions (anterior chamber cell, conjunctival hyperemia, and erythema of eyelid) occurred in two patients (7.7%) and were mild in severity. CONCLUSIONS In this study, OMDI 0.002% demonstrated a clinically significant reduction in IOP and was well tolerated in patients with primary open-angle glaucoma and OHT who were non-/low responders to latanoprost.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naveed Shams
- Santen Inc., Emeryville, CA, USA
- Santen Pharmaceutical Co., Ltd, Osaka, Japan
| |
Collapse
|
6
|
Ayaki M, Negishi K, Yuki K, Kawashima M, Uchino M, Tsubota K. Tear Break-Up Time and Seasonal Variation in Intraocular Pressure in a Japanese Population. Diagnostics (Basel) 2020; 10:E124. [PMID: 32102457 PMCID: PMC7167993 DOI: 10.3390/diagnostics10020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To evaluate seasonal variation in intraocular pressure (IOP) with and without short tear break-up time (SBUT, BUT ≤5 s) since dry eye and IOP are known to have seasonal variation. METHODS This study enrolled 176 patients who visited one of six eye clinics, in Japan, four times for IOP measurement, in every season. The mean patient age was 67.9 years, including 79 males. Participants were divided into four groups based on the presence of glaucoma and/or SBUT and we compared the seasonal variation in IOP (winter and summer) among the four groups. RESULTS The IOP (mmHg) in winter and summer, respectively, was 12.8 ± 3.7 and 12.8 ± 3.1 for non-glaucoma patients without SBUT (n = 47, p = 0.964), 14.8 ± 3.4 and 13.3 ± 3.4 for non-glaucoma patients with SBUT (n = 57, p < 0.001), 14.3 ± 3.2 and 14.1 ± 3.4 for glaucoma patients without SBUT (n = 36, p = 0.489), and 13.3 ± 3.0 and 11.6 ± 2.9 for glaucoma with SBUT (n = 36, p < 0.001). Seasonal variation was largest across the seasons in the glaucoma with the SBUT group, and the magnitude of seasonal variation correlated with BUT (β = 0.228, p = 0.003). CONCLUSIONS Seasonal variation tended to be larger in patients with SBUT than those without SBUT.
Collapse
Affiliation(s)
- Masahiko Ayaki
- Otake Clinic Moon View Eye Center, Yamato 2420001, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| | - Kenya Yuki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| | - Miki Uchino
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo 1608582, Japan; (K.Y.); (M.K.); (M.U.); (K.T.)
| |
Collapse
|
7
|
Lee SH, Jung BD, Lee S. Effect of Prostaglandin F2 Alpha on E-cadherin, N-cadherin and Cell Adhesion in Ovarian Luteal Theca Cells. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Sang-Hee Lee
- Discipline of ICT, School of Technology, Environments and Design, University of Tasmania, Hobart, Australia
| | - Bae Dong Jung
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Korea
| | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
8
|
Tan J, Liu G, Zhu X, Wu Z, Wang N, Zhou L, Zhang X, Fan N, Liu X. Lentiviral Vector-Mediated Expression of Exoenzyme C3 Transferase Lowers Intraocular Pressure in Monkeys. Mol Ther 2019; 27:1327-1338. [PMID: 31129118 DOI: 10.1016/j.ymthe.2019.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/22/2019] [Accepted: 04/26/2019] [Indexed: 12/17/2022] Open
Abstract
Primary open-angle glaucoma (POAG) is considered a lifelong disease characterized by optic nerve deterioration and visual field damage. Although the disease progression can usually be controlled by lowering the intraocular pressure (IOP), therapeutic effects of current approaches do not last long. Gene therapy could be a promising method for persistent treatment of the disease. Our previous study demonstrated that gene transfer of exoenzyme C3 transferase (C3) to the trabecular meshwork (TM) to inhibit Rho GTPase (Rho), the upstream signal molecule of Rho-associated kinase (ROCK), resulted in lowered IOP in normal rodent eyes. In the present study, we show that the lentiviral vector (LV)-mediated C3 expression inactivates RhoA in human TM cells by ADP ribosylation, resulting in disruption of the actin cytoskeleton and altered cell morphology. In addition, intracameral delivery of the C3 vector to monkey eyes leads to persistently lowered IOP without obvious signs of inflammation. This is the first report of using a vector to transduce the TM of an alive non-human primate with a gene that alters cellular machinery and physiology. Our results in non-human primates support that LV-mediated C3 expression in the TM may have therapeutic potential for glaucoma, the leading cause of irreversible blindness in humans.
Collapse
Affiliation(s)
- Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, China; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Guo Liu
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Xianjun Zhu
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences, Provincial People's Hospital, Chengdu, Sichuan, China; Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhijian Wu
- Ocular Gene Therapy Core, National Eye Institute, NIH, 6 Center Drive, Room 307, Bethesda, MD 20892, USA
| | - Ningli Wang
- Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Liang Zhou
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences, Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xiaoguang Zhang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, China; Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, School of Optometry, Shenzhen University, Shenzhen, China.
| |
Collapse
|