1
|
Osborne KJ, Walther S, Mittal VA. Motor actions across psychiatric disorders: A research domain criteria (RDoC) perspective. Clin Psychol Rev 2024; 114:102511. [PMID: 39510028 DOI: 10.1016/j.cpr.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/19/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
The motor system is critical for understanding the pathophysiology and treatment of mental illness. Abnormalities in the processes that allow us to plan and execute movement in a goal-directed, context-appropriate manner (i.e., motor actions) are especially central to clinical motor research. Within this context, the NIMH Research Domain Criteria (RDoC) framework now includes a Motor Actions construct within the recently incorporated Sensorimotor Systems Domain, providing a useful framework for conducting research on motor action processes. However, there is limited available resources for understanding or implementing this framework. We address this gap by providing a comprehensive critical review and conceptual integration of the current clinical literature on the subconstructs comprising the Motor Actions construct. This includes a detailed discussion of each Motor Action subconstruct (e.g., action planning/execution) and its measurement across different units of analysis (e.g., molecules to behavior), the temporal and conceptual relationships among the Motor Action subconstructs (and other relevant RDoC domain constructs), and how abnormalities in these Motor Action subconstructs manifest in mental illness. Together, the review illustrates how motor system dysfunction is implicated in the pathophysiology of many psychiatric conditions and demonstrates shared and distinct mechanisms that may account for similar manifestations of motor abnormalities across disorders.
Collapse
Affiliation(s)
- K Juston Osborne
- Washington University in St. Louis, Department of Psychiatry, 4444 Forest Park Ave., St. Louis, MO, USA; Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA.
| | - Sebastian Walther
- University Hospital Würzburg, Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
| | - Vijay A Mittal
- Northwestern University, Department of Psychology, 633 Clark St. Evanston, IL, USA; Northwestern University, Department of Psychiatry, 676 N. St. Claire, Chicago, IL, USA; Northwestern University, Department of Psychiatry, Institute for Policy Research, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences (DevSci), 633 Clark St., Evanston, Chicago, IL, USA
| |
Collapse
|
2
|
Bonnet C, Poulin-Charronnat B, Michel-Colent C. Aftereffects of visuomanual prism adaptation in auditory modality: Review and perspectives. Neurosci Biobehav Rev 2024; 164:105814. [PMID: 39032842 DOI: 10.1016/j.neubiorev.2024.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Visuomanual prism adaptation (PA), which consists of pointing to visual targets while wearing prisms that shift the visual field, is one of the oldest experimental paradigms used to investigate sensorimotor plasticity. Since the 2000's, a growing scientific interest emerged for the expansion of PA to cognitive functions in several sensory modalities. The present work focused on the aftereffects of PA within the auditory modality. Recent studies showed changes in mental representation of auditory frequencies and a shift of divided auditory attention following PA. Moreover, one study demonstrated benefits of PA in a patient suffering from tinnitus. According to these results, we tried to shed light on the following question: How could this be possible to modulate audition by inducing sensorimotor plasticity with glasses? Based on the literature, we suggest a bottom-up attentional mechanism involving cerebellar, parietal, and temporal structures to explain crossmodal aftereffects of PA. This review opens promising new avenues of research about aftereffects of PA in audition and its implication in the therapeutic field of auditory troubles.
Collapse
Affiliation(s)
- Clémence Bonnet
- LEAD - CNRS UMR5022, Université de Bourgogne, Pôle AAFE, 11 Esplanade Erasme, Dijon 21000, France.
| | | | - Carine Michel-Colent
- CAPS, Inserm U1093, Université de Bourgogne, UFR des Sciences du Sport, Dijon F-21000, France
| |
Collapse
|
3
|
Moore RT, Cluff T. Individual Differences in Sensorimotor Adaptation Are Conserved Over Time and Across Force-Field Tasks. Front Hum Neurosci 2021; 15:692181. [PMID: 34916916 PMCID: PMC8669441 DOI: 10.3389/fnhum.2021.692181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Sensorimotor adaptation enables the nervous system to modify actions for different conditions and environments. Many studies have investigated factors that influence adaptation at the group level. There is growing recognition that individuals vary in their ability to adapt motor skills and that a better understanding of individual differences in adaptation may inform how motor skills are taught and rehabilitated. Here we examined individual differences in the adaptation of upper-limb reaching movements. We quantified the extent to which participants adapted their movements to a velocity-dependent force field during an initial session, at 24 h, and again 1-week later. Participants (n = 28) displayed savings, which was expressed as greater initial adaptation when re-exposed to the force field. Individual differences in adaptation across various stages of the experiment displayed weak-strong reliability, such that individuals who adapted to a greater extent in the initial session tended to do so when re-exposed to the force field. Our second experiment investigated if individual differences in adaptation are also present when participants adapt to different force fields or a force field and visuomotor rotation. Separate groups of participants adapted to position- and velocity-dependent force fields (Experiment 2a; n = 20) or a velocity-dependent force field and visuomotor rotation in a single session (Experiment 2b; n = 20). Participants who adapted to a greater extent to velocity-dependent forces tended to show a greater extent of adaptation when exposed to position-dependent forces. In contrast, correlations were weak between various stages of adaptation to the force-field and visuomotor rotation. Collectively, our study reveals individual differences in adaptation that are reliable across repeated exposure to the same force field and present when adapting to different force fields.
Collapse
Affiliation(s)
- Robert T Moore
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Masselink J, Lappe M. Visuomotor learning from postdictive motor error. eLife 2021; 10:64278. [PMID: 33687328 PMCID: PMC8057815 DOI: 10.7554/elife.64278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
5
|
Opposing force fields induce direction-specific sensorimotor adaptation but a non-specific perceptual shift consistent with a contraction of peripersonal space representation. Exp Brain Res 2020; 239:31-46. [PMID: 33097985 DOI: 10.1007/s00221-020-05945-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Most of our daily interactions with objects occur in the space immediately surrounding the body, i.e. the peripersonal space. The peripersonal space is characterized by multisensory processing of objects which are coded in terms of potential actions, specifying for instance whether objects are within reach or not. Our recent work suggested a link between exposure to a new force field, which changed the effector dynamics, and the representation of peripersonal space. To better understand the interplay between the plasticity of the motor system and peripersonal space representation, the present study examined whether changing the direction of the force field specifically modified the perception of action boundaries. Participants seated at the centre of an experimental platform estimated visual targets' reachability before and after adapting upper-limb reaching movements to the Coriolis force generated by either clockwise or counter clockwise rotation of the platform (120°/s). Opposite spatial after-effects were observed, showing that force-field adaptation depends on the direction of the rotation. In contrast, perceived action boundaries shifted leftward following exposure to the new force field, regardless of the direction of the rotation. Overall, these findings support the idea that abrupt exposure to a new force field results in a direction-specific updating of the central sensorimotor representations underlying the control of arm movements. Abrupt exposure to a new force field also results in a nonspecific shift in the perception of action boundaries, which is consistent with a contraction of the peripersonal space. Such effect, which does not appear to be related to state anxiety, could be related to the protective role of the peripersonal space in response to the uncertainty of the sensorimotor system induced by the abrupt modification of the environment.
Collapse
|
6
|
Fleury L, Prablanc C, Priot AE. Do prism and other adaptation paradigms really measure the same processes? Cortex 2019; 119:480-496. [DOI: 10.1016/j.cortex.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
|
7
|
Avraham C, Dominitz M, Khait H, Avraham G, Mussa-Ivaldi FA, Nisky I. Adaptation to Laterally Asymmetrical Visuomotor Delay Has an Effect on Action But Not on Perception. Front Hum Neurosci 2019; 13:312. [PMID: 31551739 PMCID: PMC6743346 DOI: 10.3389/fnhum.2019.00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 08/21/2019] [Indexed: 11/18/2022] Open
Abstract
When interacting with the environment, the sensorimotor system faces temporal and spatial discrepancies between sensory inputs, such as delay in sensory information transmission, and asymmetrical visual inputs across space. These discrepancies can affect motor control and the representation of space. We recently showed that adaptation to a laterally asymmetric delay in the visual feedback induces neglect-like effects in blind drawing movements, expressed by asymmetrical elongation of circles that are drawn in different workspaces and directions; this establishes a possible connection between delayed feedback and asymmetrical spatial processing in the control of action. In the current study, we investigate whether such adaptation also influences visual perception. In addition, we examined transfer to another motor task – a line bisection task that is commonly used to detect spatial disorders, and extend these results to examine the mapping of these neglect-like effects. We performed two sets of experiments in which participants executed lateral reaching movements, and were exposed to visual feedback delay only in the left workspace. We examined transfer of adaptation to a perceptual line bisection task – answers about the perceived midline of lines that were presented in different directions and workspaces, and to a blind motor line bisection task – reaching movements toward the centers of similar lines. We found that the adaptation to the asymmetrical delay transferred to the control of lateral movements, but did not affect the perceived location of the midlines. Our results clarify the effect of asymmetrical delayed visual feedback on perception and action, and provide potential insights on the link between visuomotor delay and neurological disorders such as the hemispatial neglect syndrome.
Collapse
Affiliation(s)
- Chen Avraham
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Mor Dominitz
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Hana Khait
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Guy Avraham
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Ferdinando A Mussa-Ivaldi
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, United States.,Department of Biomedical Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States.,Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Ilana Nisky
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beersheba, Israel.,Zlotowski Center for Neuroscience, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
8
|
Sensori-motor adaptation to novel limb dynamics influences the representation of peripersonal space. Neuropsychologia 2019; 131:193-204. [PMID: 31091426 DOI: 10.1016/j.neuropsychologia.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 11/24/2022]
Abstract
Peripersonal space can be considered as the interface between the body and the environment, where objects can be reached and which may serve as a reference for the central nervous system with regard to possible actions. Peripersonal space can be studied by assessing the perception of the reachable space, which depends on the body's physical characteristics (i.e., arm length) since their modifications have been shown to be associated with a change in peripersonal space representation. However, it remains unclear whether the representation of limb dynamics also influences the representation of peripersonal space. The present study investigated this issue by perturbing the force-field environment. A novel force field was created by rotating an experimental platform where participants were seated while they reached towards visual targets. Manual reaching performance was assessed before, during and after platform rotation. Crucially, perception of peripersonal space was also assessed, with reachability judgments, before and after platform rotation. As expected, sensori-motor adaptation to the perturbed force field was observed. Our principal finding is that peripersonal space was systematically perceived as closer to the body after force-field adaptation. Two control experiments showed no significant difference in reachability judgments when no reaching movements were performed during platform rotation or when reaching movements were performed without platform rotation, suggesting that the change in perceived peripersonal space resulted from exposure to new limb dynamics. Overall, our findings show that sensori-motor adaptation of reaching movements to a new force field, which does not directly influence arm length but results in the updating of the arm's internal model of limb dynamics, interacts with the perceptual categorisation of space, supporting a motor contribution to the representation of peripersonal space.
Collapse
|