Fakhri H, Sayyah-Fard M. The Jaynes-Cummings model of a two-level atom in a single-mode para-Bose cavity field.
Sci Rep 2021;
11:22861. [PMID:
34819538 PMCID:
PMC8613401 DOI:
10.1038/s41598-021-02150-0]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
The coherent states in the parity deformed analog of standard boson Glauber coherent states are generated, which admit a resolution of unity with a positive measure. The quantum-mechanical nature of the light field of these para-Bose states is studied, and it is found that para-Bose order plays an important role in the nonclassical behaviors including photon antibunching, sub-Poissonian statistics, signal-to-quantum noise ratio, quadrature squeezing effect, and multi-peaked number distribution. Furthermore, we consider the Jaynes-Cummings model of a two-level atom in a para-Bose cavity field with the initial states of the excited and Glauber coherent ones when the atom makes one-photon transitions, and obtain exact energy spectrum and eigenstates of the deformed model. Nonclassical properties of the time-evolved para-Bose atom-field states are exhibited through evaluating the fidelity, evolution of atomic inversion, level damping, and von Neumann entropy. It is shown that the evolution time and the para-Bose order control these properties.
Collapse