1
|
Maxey AP, Wheeler SJ, Travis JM, McCain ML. Contractile responses of engineered human μmyometrium to prostaglandins and inflammatory cytokines. APL Bioeng 2024; 8:046115. [PMID: 39734362 PMCID: PMC11672207 DOI: 10.1063/5.0233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/05/2024] [Indexed: 12/31/2024] Open
Abstract
Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems. To address this, we engineered human myometrial microtissues (μmyometrium) on compliant hydrogels designed for traction force microscopy. We then measured μmyometrium contractility in response to a panel of compounds with known contractile effects and inflammatory mediators. We observed that prostaglandin F2α, interleukin 6, and interleukin 8 induced contraction, while prostaglandin E1 and prostaglandin E2 induced relaxation. Our data suggest that inflammation may be a key factor modulating uterine contractility in conditions including, but not limited to, preterm labor or dysmenorrhea. More broadly, our μmyometrium model can be used to systematically identify the functional impact of many small molecules on human myometrium.
Collapse
Affiliation(s)
- Antonina P. Maxey
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Sage J. Wheeler
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Jaya M. Travis
- Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | | |
Collapse
|
2
|
Jin XQ, Shen YH, Fu F, Yu J, Xiao F, Huang XD. Oxytocin infusion for maintenance of uterine tone under prophylactic phenylephrine infusion for prevention of post-spinal hypotension in cesarean delivery: a prospective randomised double-blinded dose-finding study. BMC Pregnancy Childbirth 2023; 23:840. [PMID: 38057742 DOI: 10.1186/s12884-023-06165-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Prior studies have shown that, when administered as an intravenous bolus to prevent uterine atony, prophylactic phenylephrine infusion increased the dose requirement of oxytocin and second-line uterotonics. For the prevention of uterine atony, oxytocin should be delivered by continuous infusion. Here, we aimed to determine the ED50 and ED90 parameters (the effective doses for 50 and 90% patients without uterine atony) of oxytocin for co-infusion with prophylactic phenylephrine during cesarean delivery. METHODS In this prospective randomized double-blinded dose-finding study, one hundred patients were divided into four groups to receive 2.5, 5.0, 7.5, or 10 IU/h oxytocin infusion, after the umbilical cord was clamped during the study period. The uterine tone was evaluated and defined as either adequate or inadequate. Probit regression analysis was applied to calculate the ED50 and ED90 of oxytocin infusion. Uterine tone, the percentage of patients who needed additional oxytocin bolus, second-line uterotonics, side effects, estimated blood loss, and neonatal outcomes were monitored. RESULTS The estimated ED50 and ED90 values of the oxytocin infusion doses for the prevention of uterine atony were 1.9 IU/h (95% CI -4.6-3.8) IU/h and 9.3 IU/h (95% CI 7.3-16.2) IU/h, respectively. Across groups, there was a significant linear trend between the infusion dose and the percentage of patients who required additional oxytocin (p-value = 0.002). No differences were observed in the incidence of side effects and neonatal outcomes. CONCLUSION Under the conditions of this study, the ED90 of oxytocin infusion for the prevention of uterine atony was 9.3 IU/h, which is higher than the current recommendation. This finding is helpful for clinical practice, because of the routine use of phenylephrine in cesarean delivery. Further studies are needed to determine the appropriate initial bolus of oxytocin after neonatal delivery. TRIAL REGISTRATION The study was registered on the Chinese Clinical Trial Register (register no. ChiCTR2200059556 ).
Collapse
Affiliation(s)
- Xiao-Qin Jin
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Yao-Hua Shen
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Fan Fu
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Juan Yu
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Fei Xiao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Xiao-Dong Huang
- Department of Anesthesia, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital, Hangzhou First People's Hospital Qianjiang New City Campus, Zhejiang Chinese Medical University), Hangzhou, China.
| |
Collapse
|
3
|
Qin Y, Zhang W, Bian Z, Fei C, Su L, Xue R, Zhang Q, Li Y, Chen P, Shi Y, Li M, Mao C, Zhao X, Ji D, Lu T. The therapeutic mechanism of Curcumae Radix against primary dysmenorrea based on 5-HTR/Ca2+/MAPK and fatty acids metabolomics. Front Pharmacol 2023; 14:1087654. [PMID: 36969877 PMCID: PMC10034069 DOI: 10.3389/fphar.2023.1087654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Background:Curcumae Radix (CW) is traditionally used to treat primary dysmenorrea (PD). However, the mechanisms of action of CW in the treatment of PD have not yet been comprehensively resolved.Objective: To investigate the therapeutic effects of CW on PD and its possible mechanisms of action.Methods: An isolated uterine spastic contraction model induced by oxytocin was constructed in an in vitro pharmacodynamic assay. An animal model of PD induced by combined estradiol benzoate and adrenaline hydrochloride-assisted stimulation was established. After oral administration of CW, a histopathological examination was performed and biochemical factor levels were measured to evaluate the therapeutic effect of CW on PD. The chemical compositions of the drug-containing serum and its metabolites were analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Network pharmacology and serum untargeted metabolomics were used to predict the mechanism of CW treatment for PD, and the predicted results were validated by RT-qPCR, WB, and targeted fatty acid (FA) metabolism.Results:In vitro, CW can relax an isolated uterus by reducing uterine motility. In vivo, the results showed that CW attenuated histopathological damage in the uterus and regulated PGF2α, PGE2, β-EP, 5-HT, and Ca2+ levels in PD rats. A total of 66 compounds and their metabolites were identified in the drug-containing serum, and the metabolic pathways of these components mainly included hydrogenation and oxidation. Mechanistic studies showed that CW downregulated the expression of key genes in the 5-HTR/Ca2+/MAPK pathway, such as 5-HTR2A, IP3R, PKC, cALM, and ERK. Similarly, CW downregulated the expression of key proteins in the 5-HTR/Ca2+/MAPK pathway, such as p-ERK/ERK. Indirectly, it ameliorates the abnormal FA metabolism downstream of this signaling pathway in PD rats, especially the metabolism of arachidonic acid (AA).Conclusion: The development of PD may be associated with the inhibition of the 5-HTR/Ca2+/MAPK signaling pathway and FA metabolic pathways, providing a basis for the subsequent exploitation of CW.
Collapse
Affiliation(s)
- Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Zhenhua Bian
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacy, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Xue
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yabo Shi
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingxuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- State Administration of Traditional Chinese Medicine: Traditional Chinese Medicine Concoction Technology Inheritance Base, China
| | - Xiaoli Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiaoli Zhao, ; De Ji, ; Tulin Lu,
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiaoli Zhao, ; De Ji, ; Tulin Lu,
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
- State Administration of Traditional Chinese Medicine: Traditional Chinese Medicine Concoction Technology Inheritance Base, China
- *Correspondence: Xiaoli Zhao, ; De Ji, ; Tulin Lu,
| |
Collapse
|
4
|
Jana B, Całka J. Effect of blocking of alpha1-adrenoreceptor isoforms on the noradrenaline-induced changes in contractility of inflamed pig uterus. PLoS One 2023; 18:e0280152. [PMID: 36800373 PMCID: PMC9937490 DOI: 10.1371/journal.pone.0280152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Disturbances in uterine contractility often lead to the origin, development and maintenance of endometritis and metritis, which are a very common and serious pathologies in domestic animals. Here we aimed to investigate the role of α1A-, α1B- and α1D-adrenoreceptors (ARs) in noradrenaline (NA)-induced contractility of inflammatory-changed porcine uterus. METHODS On Day 3 of the estrous cycle, either Escherichia coli (E. coli) suspension (E. coli group) or saline (SAL group) was injected into uterine horns, or only laparotomy was performed (CON group). Eight days later, infected gilts developed severe acute endometritis. RESULTS Compared to the period before NA application, NA reduced the contractile amplitude and frequency in myometrium (MYO) and endometrium (ENDO)/MYO strips from the CON, SAL and E. coli groups. In the last group, the amplitude in MYO and the frequency in ENDO/MYO were lowered versus other groups. After using α1A-ARs antagonist with NA, a greater decrease or occurrence of a drop in the amplitude and frequency in all groups (ENDO/MYO) were found compared to this neurotransmitter action alone. Such results were noted for NA action on the frequency after α1B-ARs blocking in the CON (both kinds of strips) and SAL (ENDO/MYO) groups. In response to α1D-ARs antagonist with NA, a greater decrease or occurrence of a drop in the amplitude was noted in the CON (both kinds of strips) and SAL and E. coli (MYO) groups. Use of these factors caused the similar changes in the frequency in CON and E. coli (MYO) and SAL (ENDO/MYO) groups. In response to NA, α1A,B,D-ARs antagonist led to a greater reduction or appearance of a drop in the amplitude in the CON and SAL (ENDO/MYO) and E. coli (both kinds of strips) as well as in the frequency in the CON and SAL (ENDO/MYO) and E. coli (MYO) groups. CONCLUSIONS In conclusion, activation of α1A- and α1D-ARs by NA promotes the contractile amplitude and frequency in the inflamed pig uterus; pharmacological modulation of these receptors can be utilized to enhance systolic activity of myometrium.
Collapse
Affiliation(s)
- Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Olsztyn, Poland
- * E-mail:
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
5
|
Komiyama T. Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection. BIOLOGY 2023; 12:biology12020169. [PMID: 36829448 PMCID: PMC9952598 DOI: 10.3390/biology12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Associations between neurotransmitters, adrenergic receptor (ADR) mutations, and behaviors in chickens produced and domesticated by artificial selection remain unclear. This study investigates the association of neurotransmitters and ADR mutations with egg laying and cockfighting-behaviors associated with significantly different breeding backgrounds-in Shaver Brown and Shamo chickens. Accordingly, the whole sequences of nine ADR genes were determined, and nine amino acid-specific mutation sites from five genes (ADRα1A: S365G, ADRα1D: T440N, ADRα2A: D273E, ADRβ1: N443S, S445N, ADRβ3: R342C, Q404L, and P406S) were extracted. Evolutionary analysis showed that these mutations were not ancestrally derived. These results confirm that the mutations at these sites were artificially selected for domestication and are breed specific. NST population analysis confirmed a difference in the degree of genetic differentiation between the two populations in seven genes. The results further confirm differences in the degree of genetic differentiation between the two populations in Shaver Brown (ADRA1B and ADRA1D) and Shamo (ADRA1A and ADRA2B) chickens, indicating that the ADR gene differs between the two breeds. The effects of artificial selection, guided by the human-driven selection of desirable traits, are reflected in adrenaline gene mutations. Furthermore, certain gene mutations may affect domestication, while others may affect other traits in populations or individuals.
Collapse
Affiliation(s)
- Tomoyoshi Komiyama
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
6
|
Qin Y, Fei C, Zhang W, Su L, Ji D, Bian Z, Wang M, Li Y, Mao C, Zhao X, Lu T. Based on UPLC/MS/MS and Bioinformatics Analysis to Explore the Difference Substances and Mechanism of Curcumae Radix (Curcuma wenyujin) in Dysmenorrhea. Chem Biodivers 2022; 19:e202200361. [PMID: 36017755 DOI: 10.1002/cbdv.202200361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Curcumae Radix (CW) is traditionally used to treat dysmenorrhea caused by uterine spasm. However, the changes of its composition and anti-uterine spasms during vinegar processing and the mechanism in treating dysmenorrhea are not clear. OBJECTIVE To elucidate the changes of anti-uterine spasm and its substance basis, and the mechanism of treating dysmenorrhea before and after vinegar processing. METHODS The uterine spasm contraction model was established, and the uterine activity and its inhibition rate were calculated to evaluate the differences. The main chemical constituents of CW were quickly analyzed by UPLC-Q-TOF-MS/MS technology, and the differences between them were explored by multivariate statistical analysis. Then, the regulatory network of "active ingredients-core targets-signal pathways" related to dysmenorrhea was constructed by using network pharmacology, and the combination between differential active components and targets was verified by molecular docking. RESULTS CW extract relaxed the isolated uterine by reducing the contractile tension, amplitude, and frequency. Compared with CW, the inhibitory effect of vinegar products was stronger, and the inhibition rate was 70.08 %. 39 compounds were identified from CW and 13 differential components were screened out (p<0.05). Network pharmacology screened 11 active components and 32 potential targets, involving 10 key pathways related to dysmenorrhea. The results of molecular docking showed that these differentially active components had good binding activity to target. CONCLUSION It was preliminarily revealed that CW could treat dysmenorrhea mainly through the regulation of inflammatory reaction, relaxing smooth muscle and endocrine by curcumenone, 13-hydroxygermacrone, (+)-cuparene, caryophyllene oxide, zederone, and isocurcumenol.
Collapse
Affiliation(s)
- Yuwen Qin
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Chenghao Fei
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Wei Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
- College of Pharmacy, Anhui University of Chinese Medicine, Anhui, 230012, P. R. China
| | - Lianlin Su
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Zhenhua Bian
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
- Department of Pharmacy, Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214071, P. R. China
| | - Meng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Chunqin Mao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Xiaoli Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| | - Tulin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing, 210023, P. R. China
| |
Collapse
|
7
|
Jana B, Całka J, Bulc M. Roles of alpha-2-adrenergic receptor isoforms in inflamed pig uterus contractility in vitro. Theriogenology 2022; 183:41-52. [DOI: 10.1016/j.theriogenology.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/26/2022]
|
8
|
Shen YH, Yang F, Jin LD, Qian YJ, Xing L, Huang YL, Lin SF, Xiao F. Prophylactic Phenylephrine Increases the Dose Requirement of Oxytocin to Treat Uterine Atony During Cesarean Delivery: A Double-Blinded, Single-Center, Randomized and Placebo-Controlled Trial. Front Pharmacol 2021; 12:720906. [PMID: 34744714 PMCID: PMC8563700 DOI: 10.3389/fphar.2021.720906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: Studies involving mouse models and human uterine smooth muscle cells have shown that phenylephrine inhibits uterine contractions in non-pregnant mice and human in vitro cell via cyclic adenosine monophosphate (cAMP) signaling. However, there has been no limited exploration to date of the effect of phenylephrine on uterine contractions in clinical practice. This study aimed to compare the dose requirement of oxytocin with or without the infusion of prophylactic phenylephrine to prevent post spinal hypotension during cesarean delivery under combined spinal and epidural anesthesia. Methods: This was a double-blinded, single-center, randomized, control study. One hundred and sixty pregnant patients provided informed consent and were randomly allocated to the phenylephrine (phenylephrine infusion) and control (saline infusion) groups. Patients randomized to the phenylephrine group received an intravenous prophylactic phenylephrine infusion at a fixed rate of 0.5 μg/kg/min. The control group received a saline placebo at the same rate and used the same apparatus for delivery. After neonatal delivery and clamping of the umbilical cord, patients received a standard institutional oxytocin protocol. The primary outcome measure was the total dose of oxytocin administered during CD. Secondary outcomes including the proportion (%) of patients requiring a secondary uterotonic agent and estimated blood loss (EBL) in the first 24 h after surgery. Results: The median oxytocin dose administered was significantly higher in the phenylephrine group than in the control group [6.9 ± 2.5 international standardized units (IU) vs. 5.4 ± 2.4 IU, p = 0.0004]. The number of patients that required a secondary uterotonic agent was significantly higher in the phenylephrine group than in the control group (24.2% vs. 9.1%; p = 0.034). The EBL in the first 24-h postoperatively was similar between the two groups (467 ± 47 ml vs. 392 ± 38 ml; p = 0.22). Conclusions: Prophylactic infusion of phenylephrine used to prevent post-spinal hypotension during CD was associated with a higher dose of oxytocin. This has important clinical implications, as the suboptimal use of oxytocin is associated with an increased risk of postpartum hemorrhage and increased maternal morbidity and mortality. Further studies are now needed to confirm these findings.
Collapse
Affiliation(s)
- Yao-Hua Shen
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Fan Yang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Dan Jin
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Yu-Jia Qian
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Li Xing
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Ya-Li Huang
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Su-Feng Lin
- Department of Anesthesia, Hangzhou City Linping District Maternal and Child Care Hospital, Hangzhou, China
| | - Fei Xiao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| |
Collapse
|
9
|
Liao LM, Zhou L, Wang CR, Hu JY, Lu YJ, Huang S. Opposing responses of the rat pulmonary artery and vein to phenylephrine and other agents in vitro. BMC Pulm Med 2021; 21:189. [PMID: 34090386 PMCID: PMC8180060 DOI: 10.1186/s12890-021-01558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/27/2021] [Indexed: 11/10/2022] Open
Abstract
Background Different from current cognition, our study demonstrated that adrenergic receptors agonist phenylephrine significantly relaxed isolated pulmonary artery but constricted pulmonary veins. Through comparing differences in the effects of commonly used vasoactive drugs on pulmonary artery and veins, the study aimed to improve efficiency and accuracy of isolated pulmonary vascular experiments, and to provide experimental basis for clinical drug use. Methods The contractile responses of pulmonary arteries and veins from twelve-week-old Male Sprague-Dawley rats to phenylephrine, arginine vasopressin (AVP), U46619, endothelin-1, and potassium chloride (KCl) were recorded, as well as the relaxation in response to phenylephrine, AVP, acetylcholine. To further explore the mechanism, some vessels was also pre-incubated with adrenergic receptors antagonists propranolol, prazosin and nitric oxide synthesis inhibitor N[gamma]-nitro-L-arginine methyl ester (L-NAME) before addition of the experimental drugs. Results Phenylephrine constricted pulmonary veins directly, but constricted pulmonary artery only after incubation with propranolol or/and L-NAME. The pulmonary artery exhibited significant relaxation to AVP with or without L-NAME incubation. AVP more clearly constricted the veins after incubation with L-NAME. Changes in vascular tension also varied from pulmonary artery to veins for KCl stimulation. Different from phenomena presented in veins, acetylcholine did not relax pulmonary artery preconstricted by KCl, U46619, and endothelin-1. Conclusions According to the results, phenylephrine, KCl, AVP, and acetylcholine could be used to distinguish pulmonary arteries and pulmonary veins in vitro. This also suggested that the pulmonary arteries and pulmonary veins have great differences in physiology and drug reactivity.
Collapse
Affiliation(s)
- Li-Mei Liao
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China.,Department of Anesthesiology and Perioperative Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9# Jinsui Road, Guangzhou, 510623, China
| | - Li Zhou
- Department of Physiology and Pathophysiology, School of Basic Medicine Science, Fudan University, 130 Dongan Road, Shanghai, 200032, China.
| | - Chen-Ran Wang
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Jian-Ying Hu
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Yao-Jun Lu
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China
| | - Shaoqiang Huang
- Department of Anaesthesia, Obstetrics and Gynecology Hospital, Fudan University, 128 Shenyang road, Shanghai, 200090, China.
| |
Collapse
|
10
|
Dabiré PA, Ouédraogo Y, Somé AA, Sawadogo S, Ouédraogo I, Ilboudo EM, Belemtougri RG. Relaxant Effects of the Aqueous Extract of Excoecaria grahamii (Euphorbiaceae) Leaves on Uterine Horn Contractility in Wistar Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6618565. [PMID: 33928151 PMCID: PMC8053055 DOI: 10.1155/2021/6618565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/27/2021] [Accepted: 04/03/2021] [Indexed: 11/27/2022]
Abstract
In uterine smooth muscle, the effects of Excoecaria grahamii are not yet documented. To fill this gap, we investigated the pharmacological effect of Excoecaria grahamii on the contraction of the rat isolated uterine horns. The isolated segments were exposed to different concentrations of the aqueous extract of Excoecaria grahamii leaves and pharmacological drugs. The results showed that Excoecaria grahamii aqueous extract decreased the amplitude and frequency by concentration-related manner. IC50 values were 2.4 and 2.6, respectively, for amplitude and frequency. Our study revealed that the extract did not act through histamine H2-receptors or the nitric oxide pathway. It also inhibited uterine contractions induced by oxytocin and potassium chloride (KCl). These data suggest that Excoecaria grahamii active compound can be used for calming uterine contractions. The action of Excoecaria grahamii showed that it can be useful to fight against diseases which caused uterotonic effects. It can be useful to prevent preterm birth and pains caused by menstruations but further investigation is needed to clarify the mechanism action.
Collapse
Affiliation(s)
- Prosper A. Dabiré
- Department of Life and Earth Sciences, Institute of Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Youssoufou Ouédraogo
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Abel A. Somé
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Stanislas Sawadogo
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Issaka Ouédraogo
- Department of Life and Earth Sciences, Institute of Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso
- Laboratory of Plant Biology and Ecology, Department of Plant Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Edith M. Ilboudo
- Department of Life and Earth Sciences, Institute of Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso
- Laboratory of Entomology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Raymond G. Belemtougri
- Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou 03, Burkina Faso
| |
Collapse
|
11
|
Stolk RF, Reinema F, van der Pasch E, Schouwstra J, Bressers S, van Herwaarden AE, Gerretsen J, Schambergen R, Ruth M, van der Hoeven HG, van Leeuwen HJ, Pickkers P, Kox M. Phenylephrine impairs host defence mechanisms to infection: a combined laboratory study in mice and translational human study. Br J Anaesth 2021; 126:652-664. [PMID: 33483132 DOI: 10.1016/j.bja.2020.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immunosuppression after surgery is associated with postoperative complications, mediated in part by catecholamines that exert anti-inflammatory effects via the β-adrenergic receptor. Phenylephrine, generally regarded as a selective α-adrenergic agonist, is frequently used to treat perioperative hypotension. However, phenylephrine may impair host defence through β-adrenergic affinity. METHODS Human leukocytes were stimulated with lipopolysaccharide (LPS) in the presence or absence of phenylephrine and α- and β-adrenergic antagonists. C57BL/6J male mice received continuous infusion of phenylephrine (30-50 μg kg-1 min-1 i.v.) or saline via micro-osmotic pumps, before LPS administration (5 mg kg-1 i.v.) or caecal ligation and puncture (CLP). Twenty healthy males were randomised to a 5 h infusion of phenylephrine (0.5 μg kg-1 min-1) or saline before receiving LPS (2 ng kg-1 i.v.). RESULTS In vitro, phenylephrine enhanced LPS-induced production of the anti-inflammatory cytokine interleukin (IL)-10 (maximum augmentation of 93%) while attenuating the release of pro-inflammatory mediators. These effects were reversed by pre-incubation with β-antagonists, but not α-antagonists. Plasma IL-10 levels were higher in LPS-challenged mice infused with phenylephrine, whereas pro-inflammatory mediators were reduced. Phenylephrine infusion increased bacterial counts after CLP in peritoneal fluid (+42%, P=0.0069), spleen (+59%, P=0.04), and liver (+35%, P=0.09). In healthy volunteers, phenylephrine enhanced the LPS-induced IL-10 response (+76%, P=0.0008) while attenuating plasma concentrations of pro-inflammatory mediators including IL-8 (-15%, P=0.03). CONCLUSIONS Phenylephrine exerts potent anti-inflammatory effects, possibly involving the β-adrenoreceptor. Phenylephrine promotes bacterial outgrowth after surgical peritonitis. Phenylephrine may therefore compromise host defence in surgical patients and increase susceptibility towards infection. CLINICAL TRIAL REGISTRATION NCT02675868 (Clinicaltrials.gov).
Collapse
Affiliation(s)
- Roeland F Stolk
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Intensive Care Medicine, Hospital Rijnstate, Arnhem, The Netherlands
| | - Flavia Reinema
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva van der Pasch
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost Schouwstra
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Steffi Bressers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jelle Gerretsen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roel Schambergen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mike Ruth
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hans G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Henk J van Leeuwen
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Intensive Care Medicine, Hospital Rijnstate, Arnhem, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Matthijs Kox
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Tozzi M, Hansen JB, Novak I. Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol (Oxf) 2020; 228:e13360. [PMID: 31400255 DOI: 10.1111/apha.13360] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/29/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022]
Abstract
AIM Extracellular ATP signalling is involved in many physiological and pathophysiological processes in several tissues, including adipose tissue. Adipocytes have crucial functions in lipid and glucose metabolism and they express purinergic receptors. However, the sources of extracellular ATP in adipose tissue are not well characterized. In the present study, we investigated the mechanism and regulation of ATP release in white adipocytes, and evaluated the role of extracellular ATP as potential autocrine and paracrine signal. METHODS Online ATP release was monitored in C3H10T1/2 cells and freshly isolated murine adipocytes. The ATP release mechanism and its regulation were tested in cells exposed to adrenergic agonists, insulin, glucose load and pharmacological inhibitors. Cell metabolism was monitored using Seahorse respirometry and expression analysis of pannexin-1 was performed on pre- and mature adipocytes. The ATP signalling was evaluated in live cell imaging (Ca2+ , pore formation), glycerol release and its effect on macrophages was tested in co-culture and migration assays. RESULTS Here, we show that upon adrenergic stimulation white murine adipocytes release ATP through the pannexin-1 pore that is regulated by a cAMP-PKA-dependent pathway. The ATP release correlates with increased cell metabolism and is sensitive to glucose. Extracellular ATP induces Ca2+ signalling and lipolysis in adipocytes and promotes macrophage migration. Importantly, ATP release is markedly inhibited by insulin, which operates via the activation of phosphodiesterase 3. CONCLUSIONS Our findings reveal an insulin-pannexin-1-purinergic signalling crosstalk in adipose tissue and we propose that deregulation of this signalling may contribute to adipose tissue inflammation and type 2 diabetes.
Collapse
Affiliation(s)
- Marco Tozzi
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Jacob B. Hansen
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology University of Copenhagen Copenhagen Denmark
| |
Collapse
|
13
|
Zhang Y, Qian J, Zaltzhendler O, Bshara M, Jaffa AJ, Grisaru D, Duan E, Elad D. Analysis of in vivo uterine peristalsis in the non-pregnant female mouse. Interface Focus 2019; 9:20180082. [PMID: 31263529 DOI: 10.1098/rsfs.2018.0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/24/2022] Open
Abstract
Uterine peristalsis due to spontaneous contractions of the myometrial smooth muscles has important roles in pre-implantation processes of intra-uterine sperm transport to the fertilization site, and then embryo transport to the implantation sites. We developed a new objective methodology to study in vivo uterine peristalsis in female mice during the pro-oestrus phase. The acquisition procedure of the uterine organ is remote without interfering with the organ function. The uniqueness of the new approach is that video images of physiological pattern were converted using image processing and new algorithms to biological time-dependent signals that can be processed with existing algorithms for signal processing. Using this methodology we found that uterine peristalsis in the pro-oestrus mouse is in the range of 0.008-0.029 Hz, which is about one contraction per minute and with fairly symmetric contractions that occasionally propagate caudally. This rate of contractions is similar to that of human uterine peristalsis acquired in vivo, which is important information for a popular animal model.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Oren Zaltzhendler
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mustafa Bshara
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ariel J Jaffa
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Department of Obstetrics and Gynecology, Tel-Aviv Medical Center, Tel Aviv 64239, Israel
| | - Dan Grisaru
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.,Gynecological Oncology Unit, Lis Maternity Hospital, Tel-Aviv Medical Center, Tel Aviv 64239, Israel
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - David Elad
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|