1
|
Frank SM. Transfer of Tactile Learning to Untrained Body Parts: Emerging Cortical Mechanisms. Neuroscientist 2024:10738584241256277. [PMID: 38813891 DOI: 10.1177/10738584241256277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Pioneering investigations in the mid-19th century revealed that the perception of tactile cues presented to the surface of the skin improves with training, which is referred to as tactile learning. Surprisingly, tactile learning also occurs for body parts and skin locations that are not physically involved in the training. For example, after training of a finger, tactile learning transfers to adjacent untrained fingers. This suggests that the transfer of tactile learning follows a somatotopic pattern and involves brain regions such as the primary somatosensory cortex (S1), in which the trained and untrained body parts and skin locations are represented close to each other. However, other results showed that transfer occurs between body parts that are not represented close to each other in S1-for example, between the hand and the foot. These and similar findings have led to the suggestion of additional cortical mechanisms to explain the transfer of tactile learning. Here, different mechanisms are reviewed, and the extent to which they can explain the transfer of tactile learning is discussed. What all of these mechanisms have in common is that they assume a representational or functional relationship between the trained and untrained body parts and skin locations. However, none of these mechanisms alone can explain the complex pattern of transfer results, and it is likely that different mechanisms interact to enable transfer, perhaps in concert with higher somatosensory and decision-making areas.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Markmann M, Lenz M, Höffken O, Steponavičiūtė A, Brüne M, Tegenthoff M, Dinse HR, Newen A. Hypnotic suggestions cognitively penetrate tactile perception through top-down modulation of semantic contents. Sci Rep 2023; 13:6578. [PMID: 37085590 PMCID: PMC10121590 DOI: 10.1038/s41598-023-33108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Perception is subject to ongoing alterations by learning and top-down influences. Although abundant studies have shown modulation of perception by attention, motivation, content and context, there is an unresolved controversy whether these examples provide true evidence that perception is penetrable by cognition. Here we show that tactile perception assessed as spatial discrimination can be instantaneously and systematically altered merely by the semantic content during hypnotic suggestions. To study neurophysiological correlates, we recorded EEG and SEPs. We found that the suggestion "your index finger becomes bigger" led to improved tactile discrimination, while the suggestion "your index finger becomes smaller" led to impaired discrimination. A hypnosis without semantic suggestions had no effect but caused a reduction of phase-locking synchronization of the beta frequency band between medial frontal cortex and the finger representation in somatosensory cortex. Late SEP components (P80-N140 complex) implicated in attentional processes were altered by the semantic contents, but processing of afferent inputs in SI remained unaltered. These data provide evidence that the psychophysically observed modifiability of tactile perception by semantic contents is not simply due to altered perception-based judgments, but instead is a consequence of modified perceptual processes which change the perceptual experience.
Collapse
Affiliation(s)
- Marius Markmann
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Agnė Steponavičiūtė
- Faculty of Social Sciences and Humanities, Klaipėda University, Klaipeda, Lithuania
| | - Martin Brüne
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL Universitätsklinikum Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | - Albert Newen
- Institute of Philosophy II, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Frank SM, Otto A, Volberg G, Tse PU, Watanabe T, Greenlee MW. Transfer of Tactile Learning from Trained to Untrained Body Parts Supported by Cortical Coactivation in Primary Somatosensory Cortex. J Neurosci 2022; 42:6131-6144. [PMID: 35768209 PMCID: PMC9351636 DOI: 10.1523/jneurosci.0301-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 02/05/2023] Open
Abstract
A pioneering study by Volkmann (1858) revealed that training on a tactile discrimination task improved task performance, indicative of tactile learning, and that such tactile learning transferred from trained to untrained body parts. However, the neural mechanisms underlying tactile learning and transfer of tactile learning have remained unclear. We trained groups of human subjects (female and male) in daily sessions on a tactile discrimination task either by stimulating the palm of the right hand or the sole of the right foot. Task performance before training was similar between the palm and sole. Posttraining transfer of tactile learning was greater from the trained right sole to the untrained right palm than from the trained right palm to the untrained right sole. Functional magnetic resonance imaging (fMRI) and multivariate pattern classification analysis revealed that the somatotopic representation of the right palm in contralateral primary somatosensory cortex (SI) was coactivated during tactile stimulation of the right sole. More pronounced coactivation in the cortical representation of the right palm was associated with lower tactile performance for tactile stimulation of the right sole and more pronounced subsequent transfer of tactile learning from the trained right sole to the untrained right palm. In contrast, coactivation of the cortical sole representation during tactile stimulation of the palm was less pronounced and no association with tactile performance and subsequent transfer of tactile learning was found. These results indicate that tactile learning may transfer to untrained body parts that are coactivated to support tactile learning with the trained body part.SIGNIFICANCE STATEMENT Perceptual skills such as the discrimination of tactile cues can improve by means of training, indicative of perceptual learning and sensory plasticity. However, it has remained unclear whether and if so, how such perceptual learning can occur if the training task is very difficult. Here, we show for tactile perceptual learning that the representation of the palm of the hand in primary somatosensory cortex (SI) is coactivated to support learning of a difficult tactile discrimination task with tactile stimulation of the sole of the foot. Such cortical coactivation of an untrained body part to support tactile learning with a trained body part might be critically involved in the subsequent transfer of tactile learning between the trained and untrained body parts.
Collapse
Affiliation(s)
- Sebastian M Frank
- Institute for Experimental Psychology, University of Regensburg, Regensburg 93053, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| | - Alexandra Otto
- Institute for Experimental Psychology, University of Regensburg, Regensburg 93053, Germany
- Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
| | - Gregor Volberg
- Institute for Experimental Psychology, University of Regensburg, Regensburg 93053, Germany
| | - Peter U Tse
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, Rhode Island 02912
| | - Mark W Greenlee
- Institute for Experimental Psychology, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
4
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
5
|
Spille JL, Grunwald M, Martin S, Mueller SM. Stop touching your face! A systematic review of triggers, characteristics, regulatory functions and neuro-physiology of facial self touch. Neurosci Biobehav Rev 2021; 128:102-116. [PMID: 34126163 DOI: 10.1016/j.neubiorev.2021.05.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/26/2021] [Accepted: 05/24/2021] [Indexed: 11/25/2022]
Abstract
Spontaneous face touching (sFST) is an ubiquitous behavior that occurs in people of all ages and all sexes, up to 800 times a day. Despite their high frequency, they have rarely been considered as an independent phenomenon. Recently, sFST have sparked scientific interest since they contribute to self-infection with pathogens. This raises questions about trigger mechanisms and functions of sFST and whether they can be prevented. This systematic comprehensive review compiles relevant evidence on these issues. Facial self-touches seem to increase in frequency and duration in socially, emotionally as well as cognitively challenging situations. They have been associated with attention focus, working memory processes and emotion regulating functions as well as the development and maintenance of a sense of self and body. The dominance of face touch over other body parts is discussed in light of the proximity of hand-face cortical representations and the peculiarities of facial innervations. The results show that underlying psychological and neuro-physiological mechanisms of sFST are still poorly understood and that various basic questions remain unanswered.
Collapse
Affiliation(s)
- Jente L Spille
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Martin Grunwald
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Sven Martin
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany
| | - Stephanie M Mueller
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Haptic Research Lab, 04103 Leipzig, Germany.
| |
Collapse
|
6
|
Brickwedde M, Schmidt MD, Krüger MC, Dinse HR. 20 Hz Steady-State Response in Somatosensory Cortex During Induction of Tactile Perceptual Learning Through LTP-Like Sensory Stimulation. Front Hum Neurosci 2020; 14:257. [PMID: 32694988 PMCID: PMC7339616 DOI: 10.3389/fnhum.2020.00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 02/04/2023] Open
Abstract
The induction of synaptic plasticity requires the presence of temporally patterned neural activity. Numerous cellular studies in animals and brain slices have demonstrated that long-term potentiation (LTP) enhances synaptic transmission, which can be evoked by high-frequency intermittent stimulation. In humans, plasticity processes underlying perceptual learning can be reliably induced by repetitive, LTP-like sensory stimulation. These protocols lead to improvement of perceptual abilities parallel to widespread remodeling of cortical processing. However, whether maintained rhythmic cortical activation induced by the LTP-like stimulation is also present during human perceptual learning experiments, remains elusive. To address this question, we here applied a 20 Hz intermittent stimulation protocol for 40 min to the index-, middle- and ring-fingers of the right hand, while continuously recording EEG over the hand representation in primary somatosensory cortex in young adult participants. We find that each train of stimulation initiates a transient series of sensory-evoked potentials which accumulate after about 500 ms into a 20 Hz steady-state response persisting over the entire period of the 2-s-train. During the inter-train interval, no consistent evoked activity can be detected. This response behavior is maintained over the whole 40 min of stimulation without any indication of habituation. However, the early stimulation evoked potentials (SEPs) and the event-related desynchronization (ERD) during the steady-state response change over the 40 min of stimulation. In a second experiment, we demonstrate in a separate cohort of participants that the here-applied pneumatic type of stimulation results in improvement of tactile acuity as typically observed for electrically applied 20 Hz intermittent stimulation. Our data demonstrate that repetitive stimulation using a 20 Hz protocol drives rhythmic activation in the hand representation of somatosensory cortex, which is sustained during the entire stimulation period. At the same time, cortical excitability increases as indicated by altered ERD and SEP amplitudes. Our results, together with previous data underlining the dependence of repetitive sensory stimulation effects on NMDA-receptor activation, support the view that repetitive sensory stimulation elicits LTP-like processes in the cortex, thereby facilitating perceptual learning processes.
Collapse
Affiliation(s)
- Marion Brickwedde
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany.,Cognitive Neurophysiology Lab, Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Marie D Schmidt
- Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany.,Robotics Laboratory, Computer Science Institute, University of Applied Sciences Ruhr West, Mülheim an der Ruhr, Germany
| | - Marie C Krüger
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG-Universitaetsklinikum Bergmannsheil Bochum, Bochum, Germany.,Neural Plasticity Lab, Institute for Neuroinformatics, Ruhr University, Bochum, Germany
| |
Collapse
|
7
|
Dinse HR, Tegenthoff M. Repetitive Sensory Stimulation—A Canonical Approach to Control the Induction of Human Learning at a Behavioral and Neural Level. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00021-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|