1
|
Knetsch TGJ, Ubbink M. Lipid composition affects the thermal stability of cytochrome P450 3A4 in nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184372. [PMID: 39047858 DOI: 10.1016/j.bbamem.2024.184372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Nanodiscs (NDs), self-assembled lipid bilayers encircled by membrane scaffold proteins (MSPs), offer a versatile platform for the reconstitution of membrane proteins for structural and biochemical investigations. Saturated, isoprenoid lipids are commonly found in thermophiles and have been associated with thermotolerance. To test whether these lipids confer additional stability on ND-incorporated membrane proteins, this study focuses on the thermal stability of human cytochrome P450 3A4 (CYP3A4) inside NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). NDs were characterized using size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) and densitometric SDS-PAGE. CYP3A4-DPhPC-NDs were found to comprise three MSP copies instead of the canonical dimer, as reported before for the empty NDs. Rapid, thermally induced unfolding of CYP3A4 inside NDs measured using circular dichroism and differential scanning fluorimetry (nanoDSF) revealed that the CYP3A4 melting temperature was dependent on ND composition. In POPC and DMPC-CYP3A4-NDs the melting temperature was comparable to CYP3A4 without NDs (59 °C). CYP3A4 in DPhPC-NDs showed an increase in melting temperature of 4 °C. Decline in CYP3A4 integrity as well as ND aggregation and disintegration occur at similar rates for all membrane types when subjected to exposure at 37 °C for several hours. The POPC and DMPC- CYP3A4-NDs show significant lipid loss over time, which is not observed for DPhPC-NDs. The results demonstrate that thermally induced denaturation of protein-NDs is a complex, multifaceted process, which is not represented well by rapid thermal unfolding experiments.
Collapse
Affiliation(s)
- Tim G J Knetsch
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
3
|
Nienhaus K, Sharma V, Nienhaus GU, Podust LM. Homodimerization Counteracts the Detrimental Effect of Nitrogenous Heme Ligands on the Enzymatic Activity of Acanthamoeba castellanii CYP51. Biochemistry 2022; 61:1363-1377. [PMID: 35730528 DOI: 10.1021/acs.biochem.2c00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acanthamoeba castellanii is a free-living amoeba that can cause severe eye and brain infections in humans. At present, there is no uniformly effective treatment for any of these infections. However, sterol 14α-demethylases (CYP51s), heme-containing cytochrome P450 enzymes, are known to be validated drug targets in pathogenic fungi and protozoa. The catalytically active P450 form of CYP51 from A. castellanii (AcCYP51) is stabilized against conversion to the inactive P420 form by dimerization. In contrast, Naegleria fowleri CYP51 (NfCYP51) is monomeric in its active P450 and inactive P420 forms. For these two CYP51 enzymes, we have investigated the interplay between the enzyme activity and oligomerization state using steady-state and time-resolved UV-visible absorption spectroscopy. In both enzymes, the P450 → P420 transition is favored under reducing conditions. The transition is accelerated at higher pH, which excludes a protonated thiol as the proximal ligand in P420. Displacement of the proximal thiolate ligand is also promoted by adding exogenous nitrogenous ligands (N-ligands) such as imidazole, isavuconazole, and clotrimazole that bind at the opposite, distal heme side. In AcCYP51, the P450 → P420 transition is faster in the monomer than in the dimer, indicating that the dimeric assembly is critical for stabilizing thiolate coordination to the heme and thus for sustaining AcCYP51 activity. The spectroscopic experiments were complemented with size-exclusion chromatography and X-ray crystallography studies. Collectively, our results indicate that effective inactivation of the AcCYP51 function by azole drugs is due to synergistic interference with AcCYP51 dimerization and promoting irreversible displacement of the proximal heme-thiolate ligand.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76049 Karlsruhe, Germany
| | - Vandna Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), D-76049 Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Qin Y, Dong H, Sun J, Zhang Y, Li J, Zhang T, Chen G, Wang S, Song S, Wang W, Fan Y, Wang J, Huang X, Shen C. Evaluation of MTBH, a novel hesperetin derivative, on the activity of hepatic cytochrome P450 isoform in vitro and in vivo using a cocktail method by HPLC-MS/MS. Xenobiotica 2022; 51:1389-1399. [PMID: 34806938 DOI: 10.1080/00498254.2021.2009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. 8-methylene-tert-butylamine-3',5,7-trihydroxy-4'-methoxyflavanone (MTBH), a novel hesperidin derivative, has potential in the prevention of hepatic disease, however, its effects on cytochrome P450 isoforms (CYP450s) remains unexplored. The purpose was to investigate the effects of MTBH on the mRNA, protein levels, and activities of six CYP450s (1A2, 2C11/9, 2D2/6, 3A1/4, 2C13/19, and 2E1) in vitro and in vivo.2. In vitro study, rat and human liver microsomes were adopted to elucidate the inhibitory effect of MTBH on six CYP450s using probe drugs. In vivo study, Sprague-Dawley male rats were treated with MTBH (25, 50, or 100 mg/kg for 28 consecutive days), phenobarbital (80 mg/kg for 12 consecutive days), or 0.5% CMC-Na solution (control group) by intragastric administration, then, the mRNA, protein levels and activities of liver CYP450s were analysed by real-time PCR, western blotting and probe-drug incubation systems, respectively.3. The in vitro study indicated that MTBH inhibits the activities of CYP3A1/4 and CYP2E1 in rat and human liver microsomes. In vivo data showed that MTBH inhibits mRNA, protein levels, and activities of CYP3A1 and CYP2E1 in medium- and high-dose MTBH groups.4. MTBH has the potential to cause drug-drug interactions when co-administered with drugs that are metabolised by CYP3A1/4 and CYP2E1.
Collapse
Affiliation(s)
- Yan Qin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Haijun Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Nanjing cantech Microbial Sci.& Tech. Co., Ltd, Nanjing, China
| | - Jiayin Sun
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yilong Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tianci Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guanjun Chen
- Center for Scientific Research of Anhui Medical University, Hefei, P.R. China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, Hefei, P.R. China
| | - Shuai Song
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Genrix (Shanghai) Biopharmaceutical Co., Ltd, Shanghai, P.R. China
| | - Yuru Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiaohui Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chenlin Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, Department of Basic and Clinical Pharmacology, School of Pharmacy, Anhui Medical University, Hefei, China.,Hefei Kaifan Analytical Technology Co., Ltd, Hefei, China
| |
Collapse
|
5
|
Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am J Hum Genet 2021; 108:1735-1751. [PMID: 34314704 DOI: 10.1016/j.ajhg.2021.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.
Collapse
|
6
|
Estrada DF, Kumar A, Campomizzi CS, Jay N. Crystal Structures of Drug-Metabolizing CYPs. Methods Mol Biol 2021; 2342:171-192. [PMID: 34272695 PMCID: PMC10813703 DOI: 10.1007/978-1-0716-1554-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
Sharma V, Shing B, Hernandez-Alvarez L, Debnath A, Podust LM. Domain-Swap Dimerization of Acanthamoeba castellanii CYP51 and a Unique Mechanism of Inactivation by Isavuconazole. Mol Pharmacol 2020; 98:770-780. [PMID: 33008918 DOI: 10.1124/molpharm.120.000092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance. SIGNIFICANCE STATEMENT: We investigated the mechanism of action of antifungal drugs in the human pathogen Acanthamoeba castellanii. We discovered that the enzyme target [Acanthamoeba castellanii sterol 14α-demethylase (AcCYP51)] formed a dimer via an N-termini swap, whereas drug-bound AcCYP51 was monomeric. In the AcCYP51-isavuconazole complex, the protein target failed to refold 74 N-terminal residues, suggesting a fundamentally different mechanism of AcCYP51 inactivation than only blocking the active site. Proteolytic degradation of a structurally aberrant enzyme would explain the superior potency of isavuconazole against A. castellanii.
Collapse
Affiliation(s)
- Vandna Sharma
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Brian Shing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Lilian Hernandez-Alvarez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Anjan Debnath
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, California (V.S., B.S., L.H.-A., A.D., L.M.P.) and Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista Julio de Mesquita Filho, São José do Rio Preto, São Paulo, Brazil (L.H.-A.)
| |
Collapse
|