1
|
Camprodon G, Gabro A, El Ayachi Z, Chopra S, Nout R, Maingon P, Chargari C. Personalized strategies for brachytherapy of cervix cancer. Cancer Radiother 2024; 28:610-617. [PMID: 39395842 DOI: 10.1016/j.canrad.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
Among most tailored approaches in radiation oncology, the development of brachytherapy for the treatment of cervical cancer patients has benefited from various technological innovations. The development of 3D image-guided treatments was the first step for treatment personalization. This breakthrough preceded practice homogenization and validation of predictive dose and volume parameters and prognostic factors. We review some of the most significant strategies that emerged from the ongoing research in order to increase personalization in uterovaginal brachytherapy. A better stratification based on patients and tumors characteristics may lead to better discriminate candidates for intensification or de-escalation strategies, in order to still improve patient outcome while minimizing the risk of treatment-related side effects.
Collapse
Affiliation(s)
- Guillaume Camprodon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Alexandra Gabro
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Zineb El Ayachi
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Supriya Chopra
- Department of Radiation Oncology and Medical Physics, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Remi Nout
- Department of Radiation Oncology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Philippe Maingon
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France
| | - Cyrus Chargari
- Department of Radiation Oncology, hôpital Pitié Salpêtrière, Assistance publique-hôpitaux de Paris, Sorbonne université, Paris, France.
| |
Collapse
|
2
|
Collarino A, Feudo V, Pasciuto T, Florit A, Pfaehler E, de Summa M, Bizzarri N, Annunziata S, Zannoni GF, de Geus-Oei LF, Ferrandina G, Gambacorta MA, Scambia G, Boellaard R, Sala E, Rufini V, van Velden FH. Is PET Radiomics Useful to Predict Pathologic Tumor Response and Prognosis in Locally Advanced Cervical Cancer? J Nucl Med 2024; 65:962-970. [PMID: 38548352 DOI: 10.2967/jnumed.123.267044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
This study investigated whether radiomic features extracted from pretreatment [18F]FDG PET could improve the prediction of both histopathologic tumor response and survival in patients with locally advanced cervical cancer (LACC) treated with neoadjuvant chemoradiotherapy followed by surgery compared with conventional PET parameters and histopathologic features. Methods: The medical records of all consecutive patients with LACC referred between July 2010 and July 2016 were reviewed. [18F]FDG PET/CT was performed before neoadjuvant chemoradiotherapy. Radiomic features were extracted from the primary tumor volumes delineated semiautomatically on the PET images and reduced by factor analysis. A receiver-operating-characteristic analysis was performed, and conventional and radiomic features were dichotomized with Liu's method according to pathologic response (pR) and cancer-specific death. According to the study protocol, only areas under the curve of more than 0.70 were selected for further analysis, including logistic regression analysis for response prediction and Cox regression analysis for survival prediction. Results: A total of 195 patients fulfilled the inclusion criteria. At pathologic evaluation after surgery, 131 patients (67.2%) had no or microscopic (≤3 mm) residual tumor (pR0 or pR1, respectively); 64 patients (32.8%) had macroscopic residual tumor (>3 mm, pR2). With a median follow-up of 76.0 mo (95% CI, 70.7-78.7 mo), 31.3% of patients had recurrence or progression and 20.0% died of the disease. Among conventional PET parameters, SUVmean significantly differed between pathologic responders and nonresponders. Among radiomic features, 1 shape and 3 textural features significantly differed between pathologic responders and nonresponders. Three radiomic features significantly differed between presence and absence of recurrence or progression and between presence and absence of cancer-specific death. Areas under the curve were less than 0.70 for all parameters; thus, univariate and multivariate regression analyses were not performed. Conclusion: In a large series of patients with LACC treated with neoadjuvant chemoradiotherapy followed by surgery, PET radiomic features could not predict histopathologic tumor response and survival. It is crucial to further explore the biologic mechanism underlying imaging-derived parameters and plan a large, prospective, multicenter study with standardized protocols for all phases of the process of radiomic analysis to validate radiomics before its use in clinical routine.
Collapse
Affiliation(s)
- Angela Collarino
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Vanessa Feudo
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tina Pasciuto
- Research Core Facility Data Collection G-STeP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Anita Florit
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Elisabeth Pfaehler
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco de Summa
- PET/CT Center, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Nicolò Bizzarri
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Salvatore Annunziata
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Gian Franco Zannoni
- Gynecopathology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Section of Pathology, Department of Woman and Child Health and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lioe-Fee de Geus-Oei
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Biomedical Photonic Imaging Group, MIRA Institute, University of Twente, Enschede, The Netherlands
- Department of Radiation Science and Technology, Technical University of Delft, Delft, The Netherlands
| | - Gabriella Ferrandina
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Maria Antonietta Gambacorta
- Radiation Oncology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Roma, Italy
- Section of Radiology, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Gynecologic Oncology Unit, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Section of Obstetrics and Gynecology, University Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VU University Medical Center, Amsterdam, The Netherlands; and
| | - Evis Sala
- Section of Radiology, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
- Advanced Radiodiagnostics Centre, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy;
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Floris Hp van Velden
- Section of Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Wu KC, Chen SW, Hsieh TC, Yen KY, Chang CJ, Kuo YC, Chang RF, Chia-Hung K. Early prediction of distant metastasis in patients with uterine cervical cancer treated with definitive chemoradiotherapy by deep learning using pretreatment [ 18 F]fluorodeoxyglucose positron emission tomography/computed tomography. Nucl Med Commun 2024; 45:196-202. [PMID: 38165173 DOI: 10.1097/mnm.0000000000001799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVES A deep learning (DL) model using image data from pretreatment [ 18 F]fluorodeoxyglucose ([ 18 F] FDG)-PET or computed tomography (CT) augmented with a novel imaging augmentation approach was developed for the early prediction of distant metastases in patients with locally advanced uterine cervical cancer. METHODS This study used baseline [18F]FDG-PET/CT images of newly diagnosed uterine cervical cancer patients. Data from 186 to 25 patients were analyzed for training and validation cohort, respectively. All patients received chemoradiotherapy (CRT) and follow-up. PET and CT images were augmented by using three-dimensional techniques. The proposed model employed DL to predict distant metastases. Receiver operating characteristic (ROC) curve analysis was performed to measure the model's predictive performance. RESULTS The area under the ROC curves of the training and validation cohorts were 0.818 and 0.830 for predicting distant metastasis, respectively. In the training cohort, the sensitivity, specificity, and accuracy were 80.0%, 78.0%, and 78.5%, whereas, the sensitivity, specificity, and accuracy for distant failure were 73.3%, 75.5%, and 75.2% in the validation cohort, respectively. CONCLUSION Through the use of baseline [ 18 F]FDG-PET/CT images, the proposed DL model can predict the development of distant metastases for patients with locally advanced uterine cervical cancer treatment by CRT. External validation must be conducted to determine the model's predictive performance.
Collapse
Affiliation(s)
- Kuo-Chen Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei
- Artificial Intelligence Center, China Medical University Hospital
- Department of Radiation Oncology, China Medical University Hospital
| | - Shang-Wen Chen
- Artificial Intelligence Center, China Medical University Hospital
- School of Medicine, College of Medicine, China Medical University, Taichung
- School of Medicine, College of Medicine, Taipei Medical University, Taipei
- Department of Radiation Oncology, China Medical University Hospital
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
| | - Kuo-Yang Yen
- Department of Nuclear Medicine and PET Center, China Medical University Hospital
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung
| | - Chao-Jen Chang
- Artificial Intelligence Center, China Medical University Hospital
| | - Yu-Chieh Kuo
- Artificial Intelligence Center, China Medical University Hospital
| | - Ruey-Feng Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei
- Artificial Intelligence Center, China Medical University Hospital
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei
| | - Kao Chia-Hung
- Artificial Intelligence Center, China Medical University Hospital
- Department of Nuclear Medicine and PET Center, China Medical University Hospital
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
Liu H, Cui Y, Chang C, Zhou Z, Zhang Y, Ma C, Yin Y, Wang R. Development and validation of a 18F-FDG PET/CT radiomics nomogram for predicting progression free survival in locally advanced cervical cancer: a retrospective multicenter study. BMC Cancer 2024; 24:150. [PMID: 38291351 PMCID: PMC10826285 DOI: 10.1186/s12885-024-11917-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The existing staging system cannot meet the needs of accurate survival prediction. Accurate survival prediction for locally advanced cervical cancer (LACC) patients who have undergone concurrent radiochemotherapy (CCRT) can improve their treatment management. Thus, this present study aimed to develop and validate radiomics models based on pretreatment 18Fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)-computed tomography (CT) images to accurately predict the prognosis in patients. METHODS The data from 190 consecutive patients with LACC who underwent pretreatment 18F-FDG PET-CT and CCRT at two cancer hospitals were retrospectively analyzed; 176 patients from the same hospital were randomly divided into training (n = 117) and internal validation (n = 50) cohorts. Clinical features were selected from the training cohort using univariate and multivariate Cox proportional hazards models; radiomic features were extracted from PET and CT images and filtered using least absolute shrinkage and selection operator and Cox proportional hazard regression. Three prediction models and a nomogram were then constructed using the previously selected clinical, CT and PET radiomics features. The external validation cohort that was used to validate the models included 23 patients with LACC from another cancer hospital. The predictive performance of the constructed models was evaluated using receiver operator characteristic curves, Kaplan Meier curves, and a nomogram. RESULTS In total, one clinical, one PET radiomics, and three CT radiomics features were significantly associated with progression-free survival in the training cohort. Across all three cohorts, the combined model displayed better efficacy and clinical utility than any of these parameters alone in predicting 3-year progression-free survival (area under curve: 0.661, 0.718, and 0.775; C-index: 0.698, 0.724, and 0.705, respectively) and 5-year progression-free survival (area under curve: 0.661, 0.711, and 0.767; C-index, 0.698, 0.722, and 0.676, respectively). On subsequent construction of a nomogram, the calibration curve demonstrated good agreement between actually observed and nomogram-predicted values. CONCLUSIONS In this study, a clinico-radiomics prediction model was developed and successfully validated using an independent external validation cohort. The nomogram incorporating radiomics and clinical features could be a useful clinical tool for the early and accurate assessment of long-term prognosis in patients with LACC patients who undergo concurrent chemoradiotherapy.
Collapse
Affiliation(s)
- Huiling Liu
- Department of Radiation Oncology, The Third Affillated Teaching Hospital of Xinjiang Medical University, Affilated Cancer Hospital, Urumuqi, China
| | - Yongbin Cui
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Chang
- Department of Nuclear Medicine, Third Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Zichun Zhou
- School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China
| | - Yalin Zhang
- Department of Radiation Oncology, The Third Affillated Teaching Hospital of Xinjiang Medical University, Affilated Cancer Hospital, Urumuqi, China
- Xinjiang Key Laboratory of Oncology, Urumqi, China
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, China
| | - Changsheng Ma
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Yong Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China.
| | - Ruozheng Wang
- Department of Radiation Oncology, The Third Affillated Teaching Hospital of Xinjiang Medical University, Affilated Cancer Hospital, Urumuqi, China.
- Xinjiang Key Laboratory of Oncology, Urumqi, China.
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, China.
| |
Collapse
|
5
|
Bizzarri N, Russo L, Dolciami M, Zormpas-Petridis K, Boldrini L, Querleu D, Ferrandina G, Pedone Anchora L, Gui B, Sala E, Scambia G. Radiomics systematic review in cervical cancer: gynecological oncologists' perspective. Int J Gynecol Cancer 2023; 33:1522-1541. [PMID: 37714669 DOI: 10.1136/ijgc-2023-004589] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
OBJECTIVE Radiomics is the process of extracting quantitative features from radiological images, and represents a relatively new field in gynecological cancers. Cervical cancer has been the most studied gynecological tumor for what concerns radiomics analysis. The aim of this study was to report on the clinical applications of radiomics combined and/or compared with clinical-pathological variables in patients with cervical cancer. METHODS A systematic review of the literature from inception to February 2023 was performed, including studies on cervical cancer analysing a predictive/prognostic radiomics model, which was combined and/or compared with a radiological or a clinical-pathological model. RESULTS A total of 57 of 334 (17.1%) screened studies met inclusion criteria. The majority of studies used magnetic resonance imaging (MRI), but positron emission tomography (PET)/computed tomography (CT) scan, CT scan, and ultrasound scan also underwent radiomics analysis. In apparent early-stage disease, the majority of studies (16/27, 59.3%) analysed the role of radiomics signature in predicting lymph node metastasis; six (22.2%) investigated the prediction of radiomics to detect lymphovascular space involvement, one (3.7%) investigated depth of stromal infiltration, and one investigated (3.7%) parametrial infiltration. Survival prediction was evaluated both in early-stage and locally advanced settings. No study focused on the application of radiomics in metastatic or recurrent disease. CONCLUSION Radiomics signatures were predictive of pathological and oncological outcomes, particularly if combined with clinical variables. These may be integrated in a model using different clinical-pathological and translational characteristics, with the aim to tailor and personalize the treatment of each patient with cervical cancer.
Collapse
Affiliation(s)
- Nicolò Bizzarri
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Russo
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Miriam Dolciami
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Konstantinos Zormpas-Petridis
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Luca Boldrini
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Denis Querleu
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriella Ferrandina
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigi Pedone Anchora
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Benedetta Gui
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Evis Sala
- Department of Bioimaging, Radiation Oncology and Hematology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- UOC Ginecologia Oncologica, Dipartimento per la salute della Donna e del Bambino e della Salute Pubblica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
6
|
Burchardt E, Bos-Liedke A, Serkowska K, Cegla P, Piotrowski A, Malicki J. Value of [ 18F]FDG PET/CT radiomic parameters in the context of response to chemotherapy in advanced cervical cancer. Sci Rep 2023; 13:9092. [PMID: 37277546 DOI: 10.1038/s41598-023-35843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2023] [Indexed: 06/07/2023] Open
Abstract
The first-order statistical (FOS) and second-order texture analysis on basis of Gray-Level Co-occurence Matrix (GLCM) were obtained to assess metabolic, volumetric, statistical and radiomic parameters of cervical cancer in response to chemotherapy, recurrence and age of patients. The homogeneous group of 83 patients with histologically confirmed IIIC1-IVB stage cervical cancer were analyzed, retrospectively. Before and after chemotherapy, the advancement of the disease and the effectiveness of the therapy, respectively, were established using [18F] FDG PET/CT imaging. The statistically significant differences between pre- and post-therapy parameters were observed for SUVmax, SUVmean, TLG, MTV, asphericity (ASP, p = 0.000, Z > 0), entropy (E, p = 0.0000), correlation (COR, p = 0.0007), energy (En, p = 0.000) and homogeneity (H, p = 0.0018). Among the FOS parameters, moderate correlation was observed between pre-treatment coefficient of variation (COV) and patients' recurrence (R = 0.34, p = 0.001). Among the GLCM textural parameters, moderate positive correlation was observed for post-treatment contrast (C) with the age of patients (R = 0.3, p = 0.0038) and strong and moderate correlation was observed in the case of En and H with chemotherapy response (R = 0.54 and R = 0.46, respectively). All correlations were statistically significant. This study indicates the remarkable importance of pre- and post-treatment [18F] FDG PET statistical and textural GLCM parameters according to prediction of recurrence and chemotherapy response of cervical cancer patients.
Collapse
Affiliation(s)
- Ewa Burchardt
- Department of Radiotherapy and Oncological Gynecology, Greater Poland Cancer Center, 61-866, Poznan, Poland
- Department of Electroradiology, University of Medical Science Poznan, 61-866, Poznan, Poland
| | - Agnieszka Bos-Liedke
- Department of Biomedical Physics, Adam Mickiewicz University, 61-614, Poznan, Poland.
| | | | - Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Center, 61-866, Poznan, Poland
| | - Adam Piotrowski
- Department of Biomedical Physics, Adam Mickiewicz University, 61-614, Poznan, Poland
| | - Julian Malicki
- Department of Medical Physics, Greater Poland Cancer Center, 61-866, Poznan, Poland
- Department of Electroradiology, Poznan University of Medical Science, 61-701, Poznan, Poland
| |
Collapse
|
7
|
Milara E, Alonso R, Masseing L, Seiffert AP, Gómez-Grande A, Gómez EJ, Martínez-López J, Sánchez-González P. Radiomics analysis of bone marrow biopsy locations in [ 18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma. Phys Eng Sci Med 2023; 46:903-913. [PMID: 37155114 DOI: 10.1007/s13246-023-01265-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
The combination of visual assessment of whole body [18F]FDG PET images and evaluation of bone marrow samples by Multiparameter Flow Cytometry (MFC) or Next-Generation Sequencing (NGS) is currently the most common clinical practice for the detection of Measurable Residual Disease (MRD) in Multiple Myeloma (MM) patients. In this study, radiomic features extracted from the bone marrow biopsy locations are analyzed and compared to those extracted from the whole bone marrow in order to study the representativeness of these biopsy locations in the image-based MRD assessment. Whole body [18F]FDG PET of 39 patients with newly diagnosed MM were included in the database, and visually evaluated by experts in nuclear medicine. A methodology for the segmentation of biopsy sites from PET images, including sternum and posterior iliac crest, and their subsequent quantification is proposed. First, starting from the bone marrow segmentation, a segmentation of the biopsy sites is performed. Then, segmentations are quantified extracting SUV metrics and radiomic features from the [18F]FDG PET images and are evaluated by Mann-Whitney U-tests as valuable features differentiating PET+/PET- and MFC+ /MFC- groups. Moreover, correlation between whole bone marrow and biopsy sites is studied by Spearman ρ rank. Classification performance of the radiomics features is evaluated applying seven machine learning algorithms. Statistical analyses reveal that some images features are significant in PET+/PET- differentiation, such as SUVmax, Gray Level Non-Uniformity or Entropy, especially with a balanced database where 16 of the features show a p value < 0.001. Correlation analyses between whole bone marrow and biopsy sites results in significant and acceptable coefficients, with 11 of the variables reaching a correlation coefficient greater than 0.7, with a maximum of 0.853. Machine learning algorithms demonstrate high performances in PET+/PET- classification reaching a maximum AUC of 0.974, but not for MFC+/MFC- classification. The results demonstrate the representativeness of sample sites as well as the effectiveness of extracted features (SUV metrics and radiomic features) from the [18F]FDG PET images in MRD assessment in MM patients.
Collapse
Affiliation(s)
- Eva Milara
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Rafael Alonso
- Department of Hematology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Clinical Research Hematology Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Lena Masseing
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Alexander P Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Adolfo Gómez-Grande
- Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
- Department of Nuclear Medicine, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
| | - Enrique J Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Joaquín Martínez-López
- Department of Hematology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Clinical Research Hematology Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Facultad de Medicina, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Prognostic value of textural features obtained from F-fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) in patients with locally advanced cervical cancer undergoing concurrent chemoradiotherapy. Ann Nucl Med 2023; 37:44-51. [PMID: 36369325 DOI: 10.1007/s12149-022-01802-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/23/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To evaluate whether textural features obtained from F-18 FDG PET/CT offer clinical value that can predict the outcome of patients with locally advanced cervical cancer (LACC) receiving concurrent chemoradiotherapy (CCRT). METHODS We reviewed the records of 68 patients with stage IIB-IVA LACC who underwent PET/CT before CCRT. Conventional metabolic parameters, shape indices, and textural features of the primary tumor were measured on PET/CT. A Cox regression model was used to examine the effects of variables on overall survival (OS) and progression-free survival (PFS). RESULTS The patients included in this study were classified into two groups based on median value of PET/CT parameters. The high group of GLNU derived from GLRLM is only independent prognostic factor for PFS (HR 7.142; 95% CI 1.656-30.802; p = 0.008) and OS (HR 9,780; 95% CI 1.222-78.286; p = 0.031). In addition, GLNU derived from GLRLM (AUC 0.846, 95% CI 0.738-0.923) was the best predictor for recurrence among clinical prognostic factors and PET/CT parameters. CONCLUSION Our results demonstrated that high GLNU from GLRLM on pretreatment F-18 FDG PET/CT images, were significant prognostic factors for recurrence and death in patients with LACC receiving CCRT.
Collapse
|
9
|
Jiang X, Song J, Duan S, Cheng W, Chen T, Liu X. MRI radiomics combined with clinicopathologic features to predict disease-free survival in patients with early-stage cervical cancer. Br J Radiol 2022; 95:20211229. [PMID: 35604668 PMCID: PMC10162065 DOI: 10.1259/bjr.20211229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To establish a comprehensive model including MRI radiomics and clinicopathological features to predict post-operative disease-free survival (DFS) in early-stage (pre-operative FIGO Stage IB-IIA) cervical cancer. METHODS A total of 183 patients with early-stage cervical cancer admitted to our Jiangsu Province Hospital underwent radical hysterectomy were enrolled in this retrospective study from January 2013 to June 2018 and their clinicopathology and MRI information were collected. They were then divided into training cohort (n = 129) and internal validation cohort (n = 54). The radiomic features were extracted from the pre-operative T1 contrast-enhanced (T1CE) and T2 weighted image of each patient. Least absolute shrinkage and selection operator regression and multivariate Cox proportional hazard model were used for feature selection, and the rad-score (RS) of each patient were evaluated individually. The clinicopathology model, T1CE_RS model, T1CE + T2_RS model, and clinicopathology combined with T1CE_RS model were established and compared. Patients were divided into high- and low-risk groups according to the optimum cut-off values of four models. RESULTS T1CE_RS model showed better performance on DFS prediction of early-stage cervical cancer than clinicopathological model (C-index: 0.724 vs 0.659). T1CE+T2_RS model did not improve predictive performance (C-index: 0.671). The combination of T1CE_RS and clinicopathology features showed more accurate predictive ability (C-index=0.773). CONCLUSION The combination of T1CE_RS and clinicopathology features showed more accurate predictive performance for DFS of patients with early-stage (pre-operative IB-IIA) cervical cancer which can aid in the design of individualised treatment strategies and regular follow-up. ADVANCES IN KNOWLEDGE A radiomics signature composed of T1CE radiomic features combined with clinicopathology features allowed differentiating patients at high or low risk of recurrence.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiacheng Song
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shaofeng Duan
- GE Healthcare, Precision Health Institution, Shanghai, China
| | - Wenjun Cheng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Chen
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xisheng Liu
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
11
|
Bouron C, Mathie C, Seegers V, Morel O, Jézéquel P, Lasla H, Guillerminet C, Girault S, Lacombe M, Sher A, Lacoeuille F, Patsouris A, Testard A. Prognostic Value of Metabolic, Volumetric and Textural Parameters of Baseline [ 18F]FDG PET/CT in Early Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14030637. [PMID: 35158904 PMCID: PMC8833829 DOI: 10.3390/cancers14030637] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The aim of this study was to evaluate PET/CT parameters to determine different prognostic groups in TNBC, in order to select patients with a high risk of relapse, for whom therapeutic escalation can be considered. We have demonstrated that the MTV, TLG and entropy of the primary breast lesion could be of interest to predict the prognostic outcome of TNBC patients. Abstract (1) Background: triple-negative breast cancer (TNBC) remains a clinical and therapeutic challenge primarily affecting young women with poor prognosis. TNBC is currently treated as a single entity but presents a very diverse profile in terms of prognosis and response to treatment. Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose ([18F]FDG) is gaining importance for the staging of breast cancers. TNBCs often show high [18F]FDG uptake and some studies have suggested a prognostic value for metabolic and volumetric parameters, but no study to our knowledge has examined textural features in TNBC. The objective of this study was to evaluate the association between metabolic, volumetric and textural parameters measured at the initial [18F]FDG PET/CT and disease-free survival (DFS) and overall survival (OS) in patients with nonmetastatic TBNC. (2) Methods: all consecutive nonmetastatic TNBC patients who underwent a [18F]FDG PET/CT examination upon diagnosis between 2012 and 2018 were retrospectively included. The metabolic and volumetric parameters (SUVmax, SUVmean, SUVpeak, MTV, and TLG) and the textural features (entropy, homogeneity, SRE, LRE, LGZE, and HGZE) of the primary tumor were collected. (3) Results: 111 patients were enrolled (median follow-up: 53.6 months). In the univariate analysis, high TLG, MTV and entropy values of the primary tumor were associated with lower DFS (p = 0.008, p = 0.006 and p = 0.025, respectively) and lower OS (p = 0.002, p = 0.001 and p = 0.046, respectively). The discriminating thresholds for two-year DFS were calculated as 7.5 for MTV, 55.8 for TLG and 2.6 for entropy. The discriminating thresholds for two-year OS were calculated as 9.3 for MTV, 57.4 for TLG and 2.67 for entropy. In the multivariate analysis, lymph node involvement in PET/CT was associated with lower DFS (p = 0.036), and the high MTV of the primary tumor was correlated with lower OS (p = 0.014). (4) Conclusions: textural features associated with metabolic and volumetric parameters of baseline [18F]FDG PET/CT have a prognostic value for identifying high-relapse-risk groups in early TNBC patients.
Collapse
Affiliation(s)
- Clément Bouron
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- Correspondence:
| | - Clara Mathie
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
| | - Valérie Seegers
- Research and Statistics Department, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France;
| | - Olivier Morel
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Pascal Jézéquel
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
- CRCINA, UMR 1232 INSERM, Université de Nantes, Université d’Angers, Institut de Recherche en Santé, 8 Quai Moncousu—BP 70721, CEDEX 1, 44007 Nantes, France
| | - Hamza Lasla
- Omics Data Science Unit, ICO Pays de la Loire, Bd Jacques Monod, CEDEX, 44805 Saint-Herblain, France; (P.J.); (H.L.)
| | - Camille Guillerminet
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
- Department of Medical Physics, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France
| | - Sylvie Girault
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Marie Lacombe
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Avigaelle Sher
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| | - Franck Lacoeuille
- Department of Nuclear Medicine, University Hospital of Angers, 4 rue Larrey, 49100 Angers, France;
- CRCINA, University of Nantes and Angers, INSERM UMR1232 équipe 17, 49055 Angers, France
| | - Anne Patsouris
- Department of Medical Oncology, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (C.M.); (A.P.)
- INSERM UMR1232 équipe 12, 49055 Angers, France
| | - Aude Testard
- Department of Nuclear Medicine, ICO Pays de la Loire, 15 rue André Boquel, 49055 Angers, France; (O.M.); (C.G.); (S.G.); (M.L.); (A.S.); (A.T.)
| |
Collapse
|
12
|
The value of metabolic parameters and textural analysis in predicting prognosis in locally advanced cervical cancer treated with chemoradiotherapy. Strahlenther Onkol 2022; 198:792-801. [PMID: 35072751 PMCID: PMC9402502 DOI: 10.1007/s00066-022-01900-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022]
Abstract
Objective The aim of the study was to assess the impact of clinical and metabolic parameters derived from 18F-FDG PET/CT (positron emission tomography–computed tomography) in patients with locally advanced cervical cancer (LACC) on prognosis. Methods Patients with LACC of stage IB2-IVA treated by primary radiochemotherapy followed by brachytherapy were enrolled in this retrospective study. Indexes derived from standardized uptake value (SUV), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and textural features of the primary tumor were measured for each patient. Overall survival (OS) and recurrence-free survival (RFS) rates were calculated according to Kaplan–Meier and survival curves were compared using the log-rank test. Uni- and multivariate analyses were performed using the Cox regression model. Results A total of 116 patients were included. Median follow-up was 58 months (range: 1–129). A total of 36 (31%) patients died. Five-year OS and RFS rates were 69 and 60%, respectively. Univariate analyses indicated that FIGO stage, the presence of hydronephrosis, high CYFRA 21.1 levels, and textural features had a significant impact on OS and RFS. MTV as well as SCC-Ag concentration were also significantly associated with OS. On multivariate analysis, the presence of hydronephrosis, CYFRA 21.1, and sphericity were independent prognostics factors for OS and RFS. Also, SCC-Ag level, MTV, and GLZLM (gray-level zone length matrix) ZLNU (zone length non-uniformity) were significantly associated with OS. Conclusion Classical prognostic factors and tumor heterogeneity on pretreatment PET/CT were significantly associated with prognosis in patients with LACC.
Collapse
|
13
|
Kim KE, Kim CK. Magnetic resonance imaging-based texture analysis for the prediction of postoperative clinical outcome in uterine cervical cancer. Abdom Radiol (NY) 2022; 47:352-361. [PMID: 34605967 DOI: 10.1007/s00261-021-03288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Magnetic resonance imaging (MRI)-based texture analysis (MRTA) is a novel image analysis tool that offers objective information about the spatial arrangement of MRI signal intensity. We aimed to investigate the value of MRTA in predicting the postoperative clinical outcome of patients with uterine cervical cancer. METHODS This retrospective study included 115 patients with surgically proven cervical cancer who underwent preoperative pelvic 3T-MRI, and MRTA was performed on T2-weighted images (T2), apparent diffusion coefficient (ADC) maps, and contrast-enhanced T1-weighted images (CE-T1). Filtration histogram-based texture analysis was used to generate six first-order statistical parameters [mean intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness, and kurtosis] at five spatial scaling factors (SSFs, 2-6 mm) as well as from unfiltered images. Cox proportional hazard models and time-dependent receiver operating characteristic analyses were used to evaluate the associations between parameters and recurrence-free survival (RFS). RESULTS During a median follow-up of 36 months, tumor recurrence was found in 26 patients (22.6%). Multivariate analysis demonstrated that CE-T1 MPP and T2 kurtosis at SSF3-5, CE-T1 MPP at SSF6, and CE-T1 SD at unfiltered images were independent predictors of RFS (p < 0.05). Regarding the 2-year RFS for CE-T1 MPP and T2 kurtosis at SSF5, and CE-T1 MPP at SSF6, patients with > optimal cutoff values demonstrated significantly worse survival than those with ≤ optimal cutoff values (p < 0.05). CONCLUSION Preoperative MRTA may be useful for predicting postoperative outcome in patients with cervical cancer.
Collapse
Affiliation(s)
- Ka Eun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Chan Kyo Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Luo W. Predicting Cervical Cancer Outcomes: Statistics, Images, and Machine Learning. Front Artif Intell 2021; 4:627369. [PMID: 34164615 PMCID: PMC8215338 DOI: 10.3389/frai.2021.627369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/25/2021] [Indexed: 01/22/2023] Open
Abstract
Cervical cancer is a very common and severe disease in women worldwide. Accurate prediction of its clinical outcomes will help adjust or optimize the treatment of cervical cancer and benefit the patients. Statistical models, various types of medical images, and machine learning have been used for outcome prediction and obtained promising results. Compared to conventional statistical models, machine learning has demonstrated advantages in dealing with the complexity in large-scale data and discovering prognostic factors. It has great potential in clinical application and improving cervical cancer management. However, the limitations of prediction studies and prediction models including simplification, insufficient data, overfitting and lack of interpretability, indicate that more work is needed to make clinical outcome prediction more accurate, more reliable, and more practical for clinical use.
Collapse
Affiliation(s)
- Wei Luo
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
15
|
Crandall JP, Fraum TJ, Lee M, Jiang L, Grigsby P, Wahl RL. Repeatability of 18F-FDG PET Radiomic Features in Cervical Cancer. J Nucl Med 2021; 62:707-715. [PMID: 33008931 PMCID: PMC8844259 DOI: 10.2967/jnumed.120.247999] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Knowledge of the intrinsic variability of radiomic features is essential to the proper interpretation of changes in these features over time. The primary aim of this study was to assess the test-retest repeatability of radiomic features extracted from 18F-FDG PET images of cervical tumors. The impact of different image preprocessing methods was also explored. Methods: Patients with cervical cancer underwent baseline and repeat 18F-FDG PET/CT imaging within 7 d. PET images were reconstructed using 2 methods: ordered-subset expectation maximization (PETOSEM) or ordered-subset expectation maximization with point-spread function (PETPSF). Tumors were segmented to produce whole-tumor volumes of interest (VOIWT) and 40% isocontours (VOI40). Voxels were either left at the default size or resampled to 3-mm isotropic voxels. SUV was discretized to a fixed number of bins (32, 64, or 128). Radiomic features were extracted from both VOIs, and repeatability was then assessed using the Lin concordance correlation coefficient (CCC). Results: Eleven patients were enrolled and completed the test-retest PET/CT imaging protocol. Shape, neighborhood gray-level difference matrix, and gray-level cooccurrence matrix features were repeatable, with a mean CCC value of 0.81. Radiomic features extracted from PETOSEM images showed significantly better repeatability than features extracted from PETPSF images (P < 0.001). Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT (P < 0.001). For most features (78.4%), a change in bin number or voxel size resulted in less than a 10% change in feature value. All gray-level emphasis and gray-level run emphasis features showed poor repeatability (CCC values < 0.52) when extracted from VOIWT but were highly repeatable (mean CCC values > 0.96) when extracted from VOI40Conclusion: Shape, gray-level cooccurrence matrix, and neighborhood gray-level difference matrix radiomic features were consistently repeatable, whereas gray-level run length matrix and gray-level zone length matrix features were highly variable. Radiomic features extracted from VOI40 were more repeatable than features extracted from VOIWT Changes in voxel size or SUV discretization parameters typically resulted in relatively small differences in feature value, though several features were highly sensitive to these changes.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - MinYoung Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Linda Jiang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Perry Grigsby
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Department of Radiation Oncology, Washington University in Saint Louis, St. Louis, Missouri
| |
Collapse
|
16
|
Liu Y, Zang C, Qian L, Wu A, Ke X. The effect of dose-painted intensity-modulated radiotherapy combined with chemotherapy for stage IIIB cervical cancer. Am J Transl Res 2021; 13:2813-2821. [PMID: 34017444 PMCID: PMC8129359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the effect of dose-painted intensity-modulated radiotherapy (DP-IMRT) combined with chemotherapy on stage IIIB cervical cancer. METHODS A total of 107 stage IIIB cervical cancer patients were treated with DP-IMRT combined with chemotherapy. The planning target volume (PTV) was divided into regions with different prescribed absorbed doses (so-called PTV-subvolume [PTVsv]): PTVsv1 (the part of the PTV that overlaps with the organ at risk (OAR)) received 39.6-45 Gy, 1.8 Gy/fraction (fx); and PTVsv2 (the part of the PTV that does not overlap with the OAR) received 44-50 Gy, 2.0 Gy/fx. The lymph nodes were simultaneously boosted; lymph nodes with a short axis dimension <1 cm received 50-55 Gy, 2.0-2.4 Gy/fx, while nodes with a short axis dimension >1 cm received 55-66 Gy, 2.2-2.6 Gy/fx. External radiotherapy was followed by intracavitary brachytherapy. Patients were followed up regularly to collect the survival information. RESULTS Five years after therapy, the overall survival rate and progression-free survival rate were 61.0% and 55.0%, respectively. The cumulative rates for total grade 3 or higher chronic gastrointestinal or genitourinary toxicity were 4.67% and 1.9% respectively. CONCLUSION Without compromising the primary PTV, DP-IMRT achieved good outcomes for stage IIIB cervical cancer patients with a favorable gastrointestinal toxicity profile.
Collapse
Affiliation(s)
- Yunqin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer HospitalHefei, Anhui Province, China
| | - Chunbao Zang
- Department of Radiation Oncology, The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer HospitalHefei, Anhui Province, China
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer HospitalHefei, Anhui Province, China
| | - Ailin Wu
- Oncology Radiotherapy Room, The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer HospitalHefei, Anhui Province, China
| | - Xue Ke
- Department of Radiation Oncology, The First Affiliated Hospital of USTC West District, Anhui Provincial Cancer HospitalHefei, Anhui Province, China
| |
Collapse
|
17
|
Nakajo M, Jinguji M, Tani A, Kikuno H, Hirahara D, Togami S, Kobayashi H, Yoshiura T. Application of a Machine Learning Approach for the Analysis of Clinical and Radiomic Features of Pretreatment [ 18F]-FDG PET/CT to Predict Prognosis of Patients with Endometrial Cancer. Mol Imaging Biol 2021; 23:756-765. [PMID: 33763816 DOI: 10.1007/s11307-021-01599-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To examine the prognostic significance of pretreatment 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) positron emission tomography (PET)-based radiomic features using a machine learning approach in patients with endometrial cancers. PROCEDURES Included in this retrospective study were 53 patients with endometrial cancers who underwent [18F]-FDG PET/X-ray computed tomography (CT) before treatment. Since two different PET scanners were used, post-reconstruction harmonization was performed for all PET parameters using the ComBat harmonization method. Four clinical (age, histological type, stage, and treatment method) and 40 [18F]-FDG PET-based radiomic features were ranked, and a subset of useful features was selected based on the decrease in the Gini impurity in terms of associations with disease progression. The machine learning algorithms (random forest, neural network, k-nearest neighbors (kNN), naive Bayes, logistic regression, and support vector machine) were compared using the areas under the receiver operating characteristic curve (AUC) and validated by the random sampling method. Progression-free survival (PFS) and overall survival (OS) were assessed by the Cox regression analysis. RESULTS The five best predictors of disease progression were coarseness, gray-level run length nonuniformity, stage, treatment method, and gray-level zone length nonuniformity. The kNN model obtained the best performance classifier for predicting the disease progression (AUC =0.890, accuracy =0.849, F1 score =0.848, precision =0.857, and recall =0.849). Coarseness which was the first ranked radiomic feature was selected for survival analyses, and only coarseness remained as a significant and independent factor for both PFS (hazard ratios (HR), 0.65; 95 % confidence interval [CI], 0.49-0.86; p=0.003) and OS (HR, 0.52; 95 % CI, 0.36-0.76; p<0.001) at multivariate Cox regression analysis. CONCLUSIONS [18F]-FDG PET-based radiomic analysis using a machine learning approach may be useful for predicting tumor progression and prognosis in patients with endometrial cancers.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hidehiko Kikuno
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Hirahara
- Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan
| | - Shinichi Togami
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hiroaki Kobayashi
- Department of Obstetrics and Gynecology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
18
|
Diagnostic Accuracy of 18F-FDG-PET/CT and MRI in Predicting the Tumor Response in Locally Advanced Cervical Carcinoma Treated by Chemoradiotherapy: A Meta-Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:8874990. [PMID: 33746650 PMCID: PMC7943297 DOI: 10.1155/2021/8874990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/17/2021] [Accepted: 02/20/2021] [Indexed: 01/19/2023]
Abstract
Objective The aim of this meta-analysis was to compare the diagnostic accuracy of 18F-FDG-PET/CT and MRI in predicting the tumor response in locally advanced cervical carcinoma (LACC) treated by chemoradiotherapy (CRT). Method This meta-analysis has been performed according to PRISMA guidelines. Systematic searches were conducted using PubMed and Embase databases for articles published from January 1, 2010, to January 1, 2020. By using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool, the reviewers assessed the methodological quality scores of the selected studies. We analyzed the sensitivity, specificity, and accuracy of two diagnostic methods using Meta-DiSc 1.4 and Stata 15. Results An overall of 15 studies including 1132 patients were included. Sensitivities of PET/CT and MRI were 83.5% and 82.7%, while the corresponding rates for specificities were 77.8% and 68.4%, respectively. The DOR, PLR, and NLR for MRI were 15.140, 2.92, and 22.6. PET/CT had a DOR of 25.21. The PLR and NLR for PET/CT were 4.13 and 0.215, respectively. The diagnostic sensitivity and specificity of PET/CT for the detection of residual tumor were 86% and 95%, respectively. The corresponding rates for MRI were 73% and 96%, respectively. The diagnostic sensitivity and specificity of PET/CT for the detection of tumor metastases were 97% and 99%, while the corresponding rates for MRI were 31% and 98%, respectively. Conclusion 18F-FDG PET/CT seemed to have a better overall diagnostic accuracy in the evaluation of treatment response to chemoradiotherapy in LACC patients. MRI showed a really poor sensitivity in the detection of metastases, and PET/CT performed significantly better. However, the difference between these two methods in the detection of residual disease was not significant. More studies are needed to be conducted in order to approve that 18F-FDG PET/CT can be a standard option to assess the treatment response.
Collapse
|
19
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
20
|
Zhou Z, Maquilan GM, Thomas K, Wachsmann J, Wang J, Folkert MR, Albuquerque K. Quantitative PET Imaging and Clinical Parameters as Predictive Factors for Patients With Cervical Carcinoma: Implications of a Prediction Model Generated Using Multi-Objective Support Vector Machine Learning. Technol Cancer Res Treat 2020; 19:1533033820983804. [PMID: 33357081 PMCID: PMC7768874 DOI: 10.1177/1533033820983804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Purpose: Quantitative features from pre-treatment positron emission tomography (PET) have been used to predict treatment outcomes for patients with cervical carcinoma. The purpose of this study is to use quantitative PET imaging features and clinical parameters to construct a multi-objective machine learning predictive model. Materials/Methods: Seventy-five patients with stage IB2-IVA disease treated at our institution from 2009–2012 were analyzed. Models predicting locoregional and distant failure were generated using clinical parameters (age, race, stage, histology, tumor size, nodal status) and imaging features (12 textural, 9 intensity, 8 geometric features, 2 additional imaging features) from pre-treatment PET. Model features were selected based on a multi-objective evolutionary algorithm to maximize specificity given a fixed moderately high sensitivity using support vector machine learning methods. Model 1 used clinical parameters only (C), Model 2 used imaging features only (I), and Model 3 used clinical and imaging features (C+I). Sensitivity, specificity, area under a receiver-operating characteristic curve (AUC), and p-values were compared to assess ability to predict locoregional and distant failure. Results: C+I had the highest performance for both locoregional failure (AUC 0.84, p < 0.01; specificity: 0.86; sensitivity: 0.79) and distant failure (AUC 0.75, p < 0.01; specificity: 0.75; sensitivity: 0.75). Conclusions: Based on a moderately high fixed sensitivity and optimized for specificity, the model using both clinical parameters and imaging features (C+I) had the best performance in predicting both locoregional failure and distant failure.
Collapse
Affiliation(s)
- Zhiguo Zhou
- School of Computer Science and Mathematics, University of Central Missouri, MO, USA
| | - Genevieve M Maquilan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly Thomas
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Wachsmann
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin Albuquerque
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Optimal method for metabolic tumour volume assessment of cervical cancers with inter-observer agreement on [18F]-fluoro-deoxy-glucose positron emission tomography with computed tomography. Eur J Nucl Med Mol Imaging 2020; 48:2009-2023. [PMID: 33313962 PMCID: PMC8113292 DOI: 10.1007/s00259-020-05136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Cervical cancer metabolic tumour volume (MTV) derived from [18F]-FDG PET/CT has a role in prognostication and therapy planning. There is no standard method of outlining MTV on [18F]-FDG PET/CT. The aim of this study was to assess the optimal method to outline primary cervical tumours on [18F]-FDG PET/CT using MRI-derived tumour volumes as the reference standard. METHODS 81 consecutive cervical cancer patients with pre-treatment staging MRI and [18F]-FDG PET/CT imaging were included. MRI volumes were compared with different PET segmentation methods. Method 1 measured MTVs at different SUVmax thresholds ranging from 20 to 60% (MTV20-MTV60) with bladder masking and manual adjustment when required. Method 2 created an isocontour around the tumour prior to different SUVmax thresholds being applied. Method 3 used an automated gradient method. Inter-observer agreement of MTV, following manual adjustment when required, was recorded. RESULTS For method 1, the MTV25 and MTV30 were closest to the MRI volumes for both readers (mean percentage change from MRI volume of 2.9% and 13.4% for MTV25 and - 13.1% and - 2.0% for MTV30 for readers 1 and 2). 70% of lesions required manual adjustment at MTV25 compared with 45% at MTV30. There was excellent inter-observer agreement between MTV30 to MTV60 (ICC ranged from 0.898-0.976 with narrow 95% confidence intervals (CIs)) and moderate agreement at lower thresholds (ICC estimates of 0.534 and 0.617, respectively for the MTV20 and MTV25 with wide 95% CIs). Bladder masking was performed in 86% of cases overall. For method 2, excellent correlation was demonstrated at MTV25 and MTV30 (mean % change from MRI volume of -3.9% and - 8.6% for MTV25 and - 16.9% and 19% for MTV30 for readers 1 and 2, respectively). This method also demonstrated excellent ICC across all thresholds with no manual adjustment. Method 3 demonstrated excellent ICC of 0.96 (95% CI 0.94-0.97) but had a mean percentage difference from the MRI volume of - 19.1 and - 18.2% for readers 1 and 2, respectively. 21% required manual adjustment for both readers. CONCLUSION MTV30 provides the optimal correlation with MRI volume taking into consideration the excellent inter-reader agreement and less requirement for manual adjustment.
Collapse
|
22
|
Radiomics in cervical cancer: Current applications and future potential. Crit Rev Oncol Hematol 2020; 152:102985. [DOI: 10.1016/j.critrevonc.2020.102985] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
|
23
|
Duffy IR, Boyle AJ, Vasdev N. Improving PET Imaging Acquisition and Analysis With Machine Learning: A Narrative Review With Focus on Alzheimer's Disease and Oncology. Mol Imaging 2020; 18:1536012119869070. [PMID: 31429375 PMCID: PMC6702769 DOI: 10.1177/1536012119869070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Machine learning (ML) algorithms have found increasing utility in the medical imaging field and numerous applications in the analysis of digital biomarkers within positron emission tomography (PET) imaging have emerged. Interest in the use of artificial intelligence in PET imaging for the study of neurodegenerative diseases and oncology stems from the potential for such techniques to streamline decision support for physicians providing early and accurate diagnosis and allowing personalized treatment regimens. In this review, the use of ML to improve PET image acquisition and reconstruction is presented, along with an overview of its applications in the analysis of PET images for the study of Alzheimer's disease and oncology.
Collapse
Affiliation(s)
- Ian R Duffy
- 1 Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Amanda J Boyle
- 1 Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Neil Vasdev
- 1 Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,2 Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Genomic Biomarkers of Survival in Patients with Adenocarcinoma of the Uterine Cervix Receiving Chemoradiotherapy. Int J Mol Sci 2020; 21:ijms21114117. [PMID: 32527042 PMCID: PMC7312424 DOI: 10.3390/ijms21114117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
This study investigated the prognostic effects of genomic biomarkers for predicting chemoradiotherapy (CRT)-based treatment outcomes in patients with adenocarcinoma (AC) of the uterine cervix. In all, 21 patients receiving definitive CRT were included. In accordance with the International Federation of Gynecology and Obstetrics (FIGO) staging system, 5, 8, and 8 patients were classified as having stage IB3, II, and III disease, respectively. Pretreatment biomarkers were analyzed using tissue microarrays from biopsy specimens. Genomic alterations were examined by next-generation sequencing (NGS). The outcome endpoints were disease-free survival (DFS), distant metastasis-free survival (DMFS), and local relapse-free survival (LRFS). A Cox regression model was used to examine the prognostic effects of the biomarkers and clinical parameters. The presence of myeloid cell leukemia-1 (MCL1) gene amplification and a lower immunohistochemical (IHC) marker of tumor necrotic factor alpha (TNF-α) H-score were two prognostic factors for inferior DFS. The four-year DFS was 28% and 68% for patients with or without MCL1 copy number gain, respectively (p = 0.028). In addition, MCL1 amplification predicted poor DMFS. A lower tumor mutation number (TMN) calculated from nonsynonymous mutations was associated with lower LRFS. For patients with adenocarcinoma of the uterine cervix receiving definitive CRT, prognostic information can be supplemented by MCL1 amplification, the TMN, and the TNF-α H score.
Collapse
|
25
|
Xu W, Ding Z, Shan Y, Chen W, Feng Z, Pang P, Shen Q. A Nomogram Model of Radiomics and Satellite Sign Number as Imaging Predictor for Intracranial Hematoma Expansion. Front Neurosci 2020; 14:491. [PMID: 32581674 PMCID: PMC7287169 DOI: 10.3389/fnins.2020.00491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/20/2020] [Indexed: 12/21/2022] Open
Abstract
Background We aimed to construct and validate a nomogram model based on the combination of radiomic features and satellite sign number for predicting intracerebral hematoma expansion. Methods A total of 129 patients from two institutions were enrolled in this study. The preprocessed initial CT images were used for radiomic feature extraction. The ANOVA-Kruskal–Wallis test and least absolute shrinkage and selection operator regression were applied to identify candidate radiomic features and construct the Radscore. A nomogram model was developed by integrating the Radscore with a satellite sign number. The discrimination performance of the proposed model was evaluated by receiver operating characteristic (ROC) analysis, and the predictive accuracy was assessed via a calibration curve. Decision curve analysis (DCA) and Kaplan–Meier (KM) survival analysis were performed to evaluate the clinical value of the model. Results Four optimal features were ultimately selected and contributed to the Radscore construction. A positive correlation was observed between the satellite sign number and Radscore (Pearson’s r: 0.451). The nomogram model showed the best performance with high area under the curves in both training cohort (0.881, sensitivity: 0.973; specificity: 0.787) and external validation cohort (0.857, sensitivity: 0.950; specificity: 0.766). The calibration curve, DCA, and KM analysis indicated the high accuracy and clinical usefulness of the nomogram model for hematoma expansion prediction. Conclusion A nomogram model of integrated radiomic signature and satellite sign number based on noncontrast CT images could serve as a reliable and convenient measurement of hematoma expansion prediction.
Collapse
Affiliation(s)
- Wen Xu
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanna Shan
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Chen
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhan Feng
- Department of Radiology, The First Hospital of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Peipei Pang
- Department of Pharmaceuticals Diagnosis, GE Healthcare, Hangzhou, China
| | - Qijun Shen
- Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Wang J, Zhang H, Chuong M, Latifi K, Tan S, Choi W, Hoffe S, Shridhar R, Lu W. Prediction of Anal Cancer Recurrence After Chemoradiotherapy Using Quantitative Image Features Extracted From Serial 18F-FDG PET/CT. Front Oncol 2019; 9:934. [PMID: 31612104 PMCID: PMC6777412 DOI: 10.3389/fonc.2019.00934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
We extracted image features from serial 18F-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) / computed tomography (CT) scans of anal cancer patients for the prediction of tumor recurrence after chemoradiation therapy (CRT). Seventeen patients (4 recurrent and 13 non-recurrent) underwent three PET/CT scans at baseline (Pre-CRT), in the middle of the treatment (Mid-CRT) and post-treatment (Post-CRT) were included. For each patient, Mid-CRT and Post-CRT scans were aligned to Pre-CRT scan. Comprehensive image features were extracted from CT and PET (SUV) images within manually delineated gross tumor volume, including geometry features, intensity features and texture features. The difference of feature values between two time points were also computed and analyzed. We employed univariate logistic regression model, multivariate model, and naïve Bayesian classifier to analyze the image features and identify useful tumor recurrent predictors. The area under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the accuracy of the prediction. In univariate analysis, six geometry, three intensity, and six texture features were identified as significant predictors of tumor recurrence. A geometry feature of Roundness between Post-CRT and Pre-CRT CTs was identified as the most important predictor with an AUC value of 1.00 by multivariate logistic regression model. The difference of Number of Pixels on Border (geometry feature) between Post-CRT and Pre-CRT SUVs and Elongation (geometry feature) of Post-CRT CT were identified as the most useful feature set (AUC = 1.00) by naïve Bayesian classifier. To investigate the early prediction ability, we used features only from Pre-CRT and Mid-CRT scans. Orientation (geometry feature) of Pre-CRT SUV, Mean (intensity feature) of Pre-CRT CT, and Mean of Long Run High Gray Level Emphasis (LRHGLE) (texture feature) of Pre-CRT CT were identified as the most important feature set (AUC = 1.00) by multivariate logistic regression model. Standard deviation (intensity feature) of Mid-CRT SUV and difference of Mean of LRHGLE (texture feature) between Mid-CRT and Pre-CRT SUVs were identified as the most important feature set (AUC = 0.86) by naïve Bayesian classifier. The experimental results demonstrated the potential of serial PET/CT scans in early prediction of anal tumor recurrence.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Hao Zhang
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States
| | - Michael Chuong
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States.,Miami Cancer Institute, Baptist Hospital of Miami, Miami, FL, United States
| | - Kujtim Latifi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Shan Tan
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States.,School of Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wookjin Choi
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Sarah Hoffe
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ravi Shridhar
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Wei Lu
- Department of Radiation Oncology, University of Maryland Baltimore, Baltimore, MD, United States.,Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
27
|
Shen WC, Chen SW, Wu KC, Hsieh TC, Liang JA, Hung YC, Yeh LS, Chang WC, Lin WC, Yen KY, Kao CH. Prediction of local relapse and distant metastasis in patients with definitive chemoradiotherapy-treated cervical cancer by deep learning from [ 18F]-fluorodeoxyglucose positron emission tomography/computed tomography. Eur Radiol 2019; 29:6741-6749. [PMID: 31134366 DOI: 10.1007/s00330-019-06265-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We designed a deep learning model for assessing 18F-FDG PET/CT for early prediction of local and distant failures for patients with locally advanced cervical cancer. METHODS All 142 patients with cervical cancer underwent 18F-FDG PET/CT for pretreatment staging and received allocated treatment. To augment the amount of image data, each tumor was represented as 11 slice sets each of which contains 3 2D orthogonal slices to acquire a total of 1562 slice sets. In each round of k-fold cross-validation, a well-trained proposed model and a slice-based optimal threshold were derived from a training set and used to classify each slice set in the test set into the categories of with or without local or distant failure. The classification results of each tumor were aggregated to summarize a tumor-based prediction result. RESULTS In total, 21 and 26 patients experienced local and distant failures, respectively. Regarding local recurrence, the tumor-based prediction result summarized from all test sets demonstrated that the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 71%, 93%, 63%, 95%, and 89%, respectively. The corresponding values for distant metastasis were 77%, 90%, 63%, 95%, and 87%, respectively. CONCLUSION This is the first study to use deep learning model for assessing 18F-FDG PET/CT images which is capable of predicting treatment outcomes in cervical cancer patients. KEY POINTS • This is the first study to use deep learning model for assessing 18 F-FDG PET/CT images which is capable of predicting treatment outcomes in cervical cancer patients. • All 142 patients with cervical cancer underwent 18 F-FDG PET/CT for pretreatment staging and received allocated treatment. To augment the amount of image data, each tumor was represented as 11 slice sets each of which contains 3 2D orthogonal slices to acquire a total of 1562 slice sets. • For local recurrence, all test sets demonstrated that the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 71%, 93%, 63%, 95%, and 89%, respectively. The corresponding values for distant metastasis were 77%, 90%, 63%, 95%, and 87%, respectively.
Collapse
Affiliation(s)
- Wei-Chih Shen
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Shang-Wen Chen
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Chen Wu
- Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan
| | - Te-Chun Hsieh
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan
| | - Yao-Ching Hung
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Lian-Shung Yeh
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chun Chang
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Chou Lin
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Yang Yen
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan.,Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan. .,Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung, 404, Taiwan. .,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|