1
|
Madapally HV, Abe K, Dubey V, Khandelia H. Specific protonation of acidic residues confers K + selectivity to the gastric proton pump. J Biol Chem 2024; 300:105542. [PMID: 38072058 PMCID: PMC10825007 DOI: 10.1016/j.jbc.2023.105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024] Open
Abstract
The gastric proton pump (H+,K+-ATPase) transports a proton into the stomach lumen for every K+ ion exchanged in the opposite direction. In the lumen-facing state of the pump (E2), the pump selectively binds K+ despite the presence of a 10-fold higher concentration of Na+. The molecular basis for the ion selectivity of the pump is unknown. Using molecular dynamics simulations, free energy calculations, and Na+ and K+-dependent ATPase activity assays, we demonstrate that the K+ selectivity of the pump depends upon the simultaneous protonation of the acidic residues E343 and E795 in the ion-binding site. We also show that when E936 is protonated, the pump becomes Na+ sensitive. The protonation-mimetic mutant E936Q exhibits weak Na+-activated ATPase activity. A 2.5-Å resolution cryo-EM structure of the E936Q mutant in the K+-occluded E2-Pi form shows, however, no significant structural difference compared with wildtype except less-than-ideal coordination of K+ in the mutant. The selectivity toward a specific ion correlates with a more rigid and less fluctuating ion-binding site. Despite being exposed to a pH of 1, the fundamental principle driving the K+ ion selectivity of H+,K+-ATPase is similar to that of Na+,K+-ATPase: the ionization states of the acidic residues in the ion-binding sites determine ion selectivity. Unlike the Na+,K+-ATPase, however, protonation of an ion-binding glutamate residue (E936) confers Na+ sensitivity.
Collapse
Affiliation(s)
- Hridya Valia Madapally
- PHYLIFE, Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Kazuhiro Abe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Cellular and Structural Physiology Institute, Nagoya University, Nagoya, Japan
| | - Vikas Dubey
- PHYLIFE, Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- PHYLIFE, Physical Life Science, Department of Physics Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
2
|
Jacobsen L, Lydersen L, Khandelia H. ATP-Bound State of the Uncoupling Protein 1 (UCP1) from Molecular Simulations. J Phys Chem B 2023; 127:9685-9696. [PMID: 37921649 DOI: 10.1021/acs.jpcb.3c03473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.
Collapse
Affiliation(s)
- Luise Jacobsen
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Laura Lydersen
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Himanshu Khandelia
- PhyLife: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
3
|
Fujii T, Nagamori S, Wiriyasermkul P, Zheng S, Yago A, Shimizu T, Tabuchi Y, Okumura T, Fujii T, Takeshima H, Sakai H. Parkinson's disease-associated ATP13A2/PARK9 functions as a lysosomal H +,K +-ATPase. Nat Commun 2023; 14:2174. [PMID: 37080960 PMCID: PMC10119128 DOI: 10.1038/s41467-023-37815-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Mutations in the human ATP13A2 (PARK9), a lysosomal ATPase, cause Kufor-Rakeb Syndrome, an early-onset form of Parkinson's disease (PD). Here, we demonstrate that ATP13A2 functions as a lysosomal H+,K+-ATPase. The K+-dependent ATPase activity and the lysosomal K+-transport activity of ATP13A2 are inhibited by an inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase, thapsigargin, and K+-competitive inhibitors of gastric H+,K+-ATPase, such as vonoprazan and SCH28080. Interestingly, these H+,K+-ATPase inhibitors cause lysosomal alkalinization and α-synuclein accumulation, which are pathological hallmarks of PD. Furthermore, PD-associated mutants of ATP13A2 show abnormal expression and function. Our results suggest that the H+/K+-transporting function of ATP13A2 contributes to acidification and α-synuclein degradation in lysosomes.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - Shushi Nagamori
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Pattama Wiriyasermkul
- Center for SI Medical Research and Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shizhou Zheng
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Asaka Yago
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Okumura
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
4
|
Valsecchi WM, Faraj SE, Cerf NT, Fedosova NU, Montes MR. The transported cations impose differences in the thermostability of the gastric H,K-ATPase. A kinetic analysis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184006. [PMID: 35868405 DOI: 10.1016/j.bbamem.2022.184006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
This work analyses the thermostability of a membrane protein, the gastric H,K-ATPase, by means of a detailed kinetic characterization of its inactivation process, which showed to exhibit first-order kinetics. We observed parallel time courses for the decrease of ATPase activity, the decrease of the autophosphorylation capacity and the loss of tertiary structure at 49 °C. Higher temperatures were required to induce a significant change in secondary structure. The correspondence between the kinetics of Trp fluorescence measured at 49 °C and the decrease of the residual activity after heating at that temperature, proves the irreversibility of the inactivation process. Inactivation proceeds at different rates in E1 or E2 conformations. The K+-induced E2 state exhibits a lower inactivation rate; the specific effect is exerted with a K0.5 similar to that found at 25 °C, providing a further inkling that K+ occlusion by the H,K-ATPase is not really favoured. Increasing [H+] from pH 8 to pH 7, which possibly shifts the protein to E1, produces a subtle destabilizing effect on the H,K-ATPase. We performed a prediction of potential intramolecular interactions and found that the differential stability between E1 and E2 may be mainly explained by the higher number of hydrophobic interactions in the α- and β-subunits of E2 conformation.
Collapse
Affiliation(s)
- W M Valsecchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - S E Faraj
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N T Cerf
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N U Fedosova
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M R Montes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Themistocleous SC, Yiallouris A, Tsioutis C, Zaravinos A, Johnson EO, Patrikios I. Clinical significance of P-class pumps in cancer. Oncol Lett 2021; 22:658. [PMID: 34386080 PMCID: PMC8298992 DOI: 10.3892/ol.2021.12919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
P-class pumps are specific ion transporters involved in maintaining intracellular/extracellular ion homeostasis, gene transcription, and cell proliferation and migration in all eukaryotic cells. The present review aimed to evaluate the role of P-type pumps [Na+/K+ ATPase (NKA), H+/K+ ATPase (HKA) and Ca2+-ATPase] in cancer cells across three fronts, namely structure, function and genetic expression. It has been shown that administration of specific P-class pumps inhibitors can have different effects by: i) Altering pump function; ii) inhibiting cell proliferation; iii) inducing apoptosis; iv) modifying metabolic pathways; and v) induce sensitivity to chemotherapy and lead to antitumor effects. For example, the NKA β2 subunit can be downregulated by gemcitabine, resulting in increased apoptosis of cancer cells. The sarcoendoplasmic reticulum calcium ATPase can be inhibited by thapsigargin resulting in decreased prostate tumor volume, whereas the HKA α subunit can be affected by proton pump inhibitors in gastric cancer cell lines, inducing apoptosis. In conclusion, the present review highlighted the central role of P-class pumps and their possible use and role as anticancer cellular targets for novel therapeutic chemical agents.
Collapse
Affiliation(s)
- Sophia C Themistocleous
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Andreas Yiallouris
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Constantinos Tsioutis
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus.,College of Medicine, Member of Qatar University Health, Qatar University, 2713 Doha, Qatar
| | - Elizabeth O Johnson
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| | - Ioannis Patrikios
- Department of Medicine, School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review summarizes the past year's literature, both clinical and basic science, regarding potential adverse effects of proton pump inhibitors (PPIs). RECENT FINDINGS PPIs are amongst the most widely prescribed and over-prescribed medications worldwide. Although generally considered well tolerated, epidemiologic studies that mine large databases have reported a panoply of putative adverse effects associated with PPIs. It should be emphasized that the quality of the evidence underlying most of these associations is very low and the studies, by design, cannot ascribe cause and effect. These associations continue to be sensationalized in the media and misinterpreted by providers and patients. The unintended consequences are that patients who require PPIs, such as those taking dual antiplatelet agents, are not being prescribed or taking these necessary medications. In addition, physicians are spending an inordinate amount of additional time placing these findings into proper perspective for their patients and reassuring them upon initiating PPI treatment as well as at every follow-up visit. SUMMARY Most of the recent publicized putative serious adverse effects attributed to PPIs rely on observational data and have not been confirmed in prospective randomized trials. Nevertheless, PPIs should be prescribed for valid indications and when prescribed long-term, they should be used at the lowest effective dose and the need for their use periodically reassessed.
Collapse
|
7
|
Sushko GB, Solov'yov IA, Solov'yov AV. Modeling MesoBioNano systems with MBN Studio made easy. J Mol Graph Model 2019; 88:247-260. [PMID: 30776757 DOI: 10.1016/j.jmgm.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
This paper introduces MesoBioNano (MBN) Studio - a graphical user interface for a popular multiscale simulation package MBN Explorer. MBN Studio has been developed to facilitate setting up and starting MBN Explorer calculations, monitoring their progress and examining the calculation results. It is tailored for any calculations that are supported by MBN Explorer, such as for example the single-point energy calculations, structure optimization, molecular dynamics, and kinetic Monte Carlo simulations. Apart from that MBN Studio has built-in tools allowing the calculation and analysis of specific characteristics that are determined by the output of the simulations, such as the diffusion coefficients of molecular species, melting temperatures and associated heat capacities, radial distribution function; a dedicated modeling plug-in allows constructing molecular systems in a quick and efficient manner. Employing this plug-in, one can easily construct molecular systems of different geometries (e.g., spherical or ellipsoidal nanoparticles, cubic crystalline samples) with various atomic composition. The paper presents the first public release of MBN Studio and provides an overview of its significant capabilities, as well as the reference point for further extensions.
Collapse
Affiliation(s)
- Gennady B Sushko
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany.
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark.
| | - Andrey V Solov'yov
- MBN Research Center, Altenhöferallee 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|