1
|
Ge C, Masalehdan T, Shojaei Baghini M, Duran Toro V, Signorelli L, Thomson H, Gregurec D, Heidari H. Microfabrication Technologies for Nanoinvasive and High-Resolution Magnetic Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404254. [PMID: 39445520 DOI: 10.1002/advs.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The increasing demand for precise neuromodulation necessitates advancements in techniques to achieve higher spatial resolution. Magnetic stimulation, offering low signal attenuation and minimal tissue damage, plays a significant role in neuromodulation. Conventional transcranial magnetic stimulation (TMS), though noninvasive, lacks the spatial resolution and neuron selectivity required for spatially precise neuromodulation. To address these limitations, the next generation of magnetic neurostimulation technologies aims to achieve submillimeter-resolution and selective neuromodulation with high temporal resolution. Invasive and nanoinvasive magnetic neurostimulation are two next-generation approaches: invasive methods use implantable microcoils, while nanoinvasive methods use magnetic nanoparticles (MNPs) to achieve high spatial and temporal resolution of magnetic neuromodulation. This review will introduce the working principles, technical details, coil designs, and potential future developments of these approaches from an engineering perspective. Furthermore, the review will discuss state-of-the-art microfabrication in depth due to its irreplaceable role in realizing next-generation magnetic neuromodulation. In addition to reviewing magnetic neuromodulation, this review will cover through-silicon vias (TSV), surface micromachining, photolithography, direct writing, and other fabrication technologies, supported by case studies, providing a framework for the integration of magnetic neuromodulation and microelectronics technologies.
Collapse
Affiliation(s)
- Changhao Ge
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tahereh Masalehdan
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Mahdieh Shojaei Baghini
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Vicente Duran Toro
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Lorenzo Signorelli
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Hannah Thomson
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Danijela Gregurec
- Biointerfaces lab, Faculty of Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestraße 91, 91052, Erlangen, Germany
| | - Hadi Heidari
- Microelectronics Lab (meLAB), James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Alzahrani M, Roth BJ. The Electric Field Induced by a Microcoil During Magnetic Stimulation. IEEE Trans Biomed Eng 2023; 70:3260-3262. [PMID: 37167044 DOI: 10.1109/tbme.2023.3275098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVE The purpose of this study is to calculate the electric field produced by an implanted microcoil during magnetic stimulation of the brain. METHODS The electric field of a microcoil was calculated numerically. RESULTS The maximum value of the induced electric field is approximately 0.000026 V/m for a 1 mA, 3 kHz current passed through the coil. CONCLUSION This electric field value is too small to cause neural stimulation. SIGNIFICANCE Previous studies reporting magnetic stimulation using a microcoil must have been exciting neurons by some other mechanism.
Collapse
|
3
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
4
|
Kosta P, Mize J, Warren DJ, Lazzi G. Simulation-Based Optimization of Figure-of-Eight Coil Designs and Orientations for Magnetic Stimulation of Peripheral Nerve. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2901-2913. [PMID: 33201821 DOI: 10.1109/tnsre.2020.3038406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although magnetic neural stimulation has many advantages over electrical neural stimulation, its main disadvantages are higher energy requirement and poor stimulation selectivity. The orientation and location of the coil with respect to the stimulation site play a critical role in determining the stimulation threshold and stimulation selectivity. Utilizing numerical simulations in this work, we optimized the design parameters, orientation, and positioning of magnetic coils with respect to the peripheral nerve for improved stimulation efficacy. Specifically, we investigated different orientations and positions of the figure-of-eight coils for neural stimulation of the rat sciatic nerve. We also examined the effect of coil design parameters (number of layers and turns) and different coil electrical configurations (opposite vs. same direction of coil currents and series vs. parallel coil connections) on the stimulation threshold. We leveraged the multi-resolution impedance method and a heterogeneous multi-fascicular anatomical model of rat sciatic nerve to explore the possibility of selective stimulation as well. Neural excitation of a nerve fiber was implemented by an equivalent cable model and Frankenhaeuser-Huxley equations using NEURON software. Results suggest that inter-fascicular selectivity could be achieved by properly orienting and positioning the coil with respect to the nerve. Further, by orienting the figure-of-eight coil at an angle of 90° and 6 mm offset, we could switch between primarily activating one fascicle (and barely activating the other) and reversing those roles by merely switching the current direction in the two coils of the figure-of-eight coil.
Collapse
|