1
|
Khojasteh B, Shao Y, Kuchenbecker KJ. Robust Surface Recognition With the Maximum Mean Discrepancy: Degrading Haptic-Auditory Signals Through Bandwidth and Noise. IEEE TRANSACTIONS ON HAPTICS 2024; 17:58-65. [PMID: 38252576 DOI: 10.1109/toh.2024.3356609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sliding a tool across a surface generates rich sensations that can be analyzed to recognize what is being touched. However, the optimal configuration for capturing these signals is yet unclear. To bridge this gap, we consider haptic-auditory data as a human explores surfaces with different steel tools, including accelerations of the tool and finger, force and torque applied to the surface, and contact sounds. Our classification pipeline uses the maximum mean discrepancy (MMD) to quantify differences in data distributions in a high-dimensional space for inference. With recordings from three hemispherical tool diameters and ten diverse surfaces, we conducted two degradation studies by decreasing sensing bandwidth and increasing added noise. We evaluate the haptic-auditory recognition performance achieved with the MMD to compare newly gathered data to each surface in our known library. The results indicate that acceleration signals alone have great potential for high-accuracy surface recognition and are robust against noise contamination. The optimal accelerometer bandwidth exceeds 1000 Hz, suggesting that useful vibrotactile information extends beyond human perception range. Finally, smaller tool tips generate contact vibrations with better noise robustness. The provided sensing guidelines may enable superhuman performance in portable surface recognition, which could benefit quality control, material documentation, and robotics.
Collapse
|
2
|
Fujita N, Kinoshita T, Iwao M, Masuda N, Nakanishi Y. Friction control of elastic materials on glass by means of textured surfaces. Sci Rep 2022; 12:15423. [PMID: 36104464 PMCID: PMC9474819 DOI: 10.1038/s41598-022-19338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractTo investigate the friction behaviors of elastomer and polyacetal writing tips sliding on various textured glass surfaces, the influences of the pitch size and height of sub-millimeter to millimeter sized texture on friction were examined via reciprocating friction tests. The friction coefficients of each writing tip could be systematically varied by changing the pitch and height of the texture. These changes in friction were based on the relationship between the convex-concave shapes and the contact parts of the writing tip, and hence, influence the adhesive, abrasive, and deformation frictions. By inducing a surface texture with a pitch smaller than the contact area of the writing tip, the friction coefficient could be reduced effectively. By inducing a surface texture with a larger height, the friction coefficient of the elastomer could be increased due to deformation friction. These behaviors indicate the possibility of controlling the friction by changing the parameters such as the pitch and height of the textured glass surfaces.
Collapse
|
3
|
Peng Y, Serfass CM, Kawazoe A, Shao Y, Gutierrez K, Hill CN, Santos VJ, Visell Y, Hsiao LC. Elastohydrodynamic friction of robotic and human fingers on soft micropatterned substrates. NATURE MATERIALS 2021; 20:1707-1711. [PMID: 33927390 DOI: 10.1038/s41563-021-00990-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/18/2021] [Indexed: 05/10/2023]
Abstract
Frictional sliding between patterned surfaces is of fundamental and practical importance in the haptic engineering of soft materials. In emerging applications such as remote surgery and soft robotics, thin fluid films between solid surfaces lead to a multiphysics coupling between solid deformation and fluid dissipation. Here, we report a scaling law that governs the peak friction values of elastohydrodynamic lubrication on patterned surfaces. These peaks, absent in smooth tribopairs, arise due to a separation of length scales in the lubricant flow. The framework is generated by varying the geometry, elasticity and fluid properties of soft tribopairs and measuring the lubricated friction with a triborheometer. The model correctly predicts the elastohydrodynamic lubrication friction of a bioinspired robotic fingertip and human fingers. Its broad applicability can inform the future design of robotic hands or grippers in realistic conditions, and open up new ways of encoding friction into haptic signals.
Collapse
Affiliation(s)
- Yunhu Peng
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Christopher M Serfass
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Anzu Kawazoe
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Yitian Shao
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth Gutierrez
- Department of Mechanical and Aerospace Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Catherine N Hill
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Veronica J Santos
- Department of Mechanical and Aerospace Engineering, University of California-Los Angeles, Los Angeles, CA, USA
| | - Yon Visell
- Department of Electrical and Computer Engineering, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
4
|
Abstract
Fingerprints are unique to primates and koalas but what advantages do these features of our hands and feet provide us compared with the smooth pads of carnivorans, e.g., feline or ursine species? It has been argued that the epidermal ridges on finger pads decrease friction when in contact with smooth surfaces, promote interlocking with rough surfaces, channel excess water, prevent blistering, and enhance tactile sensitivity. Here, we found that they were at the origin of a moisture-regulating mechanism, which ensures an optimal hydration of the keratin layer of the skin for maximizing the friction and reducing the probability of catastrophic slip due to the hydrodynamic formation of a fluid layer. When in contact with impermeable surfaces, the occlusion of the sweat from the pores in the ridges promotes plasticization of the skin, dramatically increasing friction. Occlusion and external moisture could cause an excess of water that would defeat the natural hydration balance. However, we have demonstrated using femtosecond laser-based polarization-tunable terahertz wave spectroscopic imaging and infrared optical coherence tomography that the moisture regulation may be explained by a combination of a microfluidic capillary evaporation mechanism and a sweat pore blocking mechanism. This results in maintaining an optimal amount of moisture in the furrows that maximizes the friction irrespective of whether a finger pad is initially wet or dry. Thus, abundant low-flow sweat glands and epidermal furrows have provided primates with the evolutionary advantage in dry and wet conditions of manipulative and locomotive abilities not available to other animals.
Collapse
|
5
|
Lipomi DJ, Dhong C, Carpenter CW, Root NB, Ramachandran VS. Organic Haptics: Intersection of Materials Chemistry and Tactile Perception. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1906850. [PMID: 34276273 PMCID: PMC8281818 DOI: 10.1002/adfm.201906850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 05/06/2023]
Abstract
The goal of the field of haptics is to create technologies that manipulate the sense of touch. In virtual and augmented reality, haptic devices are for touch what loudspeakers and RGB displays are for hearing and vision. Haptic systems that utilize micromotors or other miniaturized mechanical devices (e.g., for vibration and pneumatic actuation) produce interesting effects, but are quite far from reproducing the feeling of real materials. They are especially deficient in recapitulating surface properties: fine texture, friction, viscoelasticity, tack, and softness. The central argument of this Progress Report is that to reproduce the feel of everyday objects requires chemistry: molecular control over the properties of materials and ultimately design of materials which can change these properties in real time. Stimuli-responsive organic materials, such as polymers and composites, are a class of materials which can change their oxidation state, conductivity, shape, and rheological properties, and thus might be useful in future haptic technologies. Moreover, the use of such materials in research on tactile perception could help elucidate the limits of human tactile sensitivity. The work described represents the beginnings of this new area of inquiry, in which the defining approach is the marriage of materials science and psychology.
Collapse
Affiliation(s)
- Darren J Lipomi
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Charles Dhong
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Cody W Carpenter
- Department of NanoEngineering and Program in Chemical Engineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Nicholas B Root
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| | - Vilayanur S Ramachandran
- Department of Psychology, University of California, San Diego, 9500 Gilman Drive, Mail Code 0109, La Jolla, CA 92093-0109
| |
Collapse
|
6
|
Li X, Choi C, Ma Y, Boonpuek P, Felts JR, Mullenbach J, Shultz C, Colgate JE, Hipwell MC. Electrowetting: A Consideration in Electroadhesion. IEEE TRANSACTIONS ON HAPTICS 2020; 13:522-529. [PMID: 32149656 DOI: 10.1109/toh.2020.2979439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the commercialization of haptic devices, understanding behavior under various environmental conditions is crucial for product optimization and cost reduction. Specifically, for surface haptic devices, the dependence of the friction force and the electroadhesion effect on the environmental relative humidity and the finger hydration level can directly impact their design and performance. This article presents the influence of relative humidity on the finger-surface friction force and the electroadhesion performance. Mechanisms including changes to Young's modulus of skin, contact angle change and capillary force were analyzed separately with experimental and numerical methods. Through comparison of the calculated capillary force in this paper and the electroadhesion force calculated in published papers, it was found that electrowetting at high voltage could contribute up to 60% of the total friction force increase in electroadhesion. Therefore, in future design of surface haptic devices, the effect of electrowetting should be considered carefully.
Collapse
|