1
|
Goździk P, Smolarz K, Hallmann A. Antidepressants as new endocrine disruptors? - transcriptomic profiling in gonads of Mytilus trossulus exposed to norfluoxetine. MARINE POLLUTION BULLETIN 2024; 208:117015. [PMID: 39305840 DOI: 10.1016/j.marpolbul.2024.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 09/15/2024] [Indexed: 10/23/2024]
Abstract
In this study an impact of norfluoxetine (NFLU) on Mytilus trossulus gonads was investigated focusing on sex-related differences in hormonal changes, gene expression, and transcriptomic profiling. Sex-specific differences in gonadal serotonin levels were found. NFLU stimulates serotonin synthesis and/or transport in female gonads, potentially accelerating oocyte maturation and gamete release. In males, NFLU decreases serotonin level what likely leads to impeding sperm maturation and thus spawning delay. Transcriptomic analyses highlighted the presence of NFLU-induced changes in gene expression related to gametogenesis and neurotransmission. In females, NFLU upregulated genes associated with oocyte development and downregulated those involved in sperm maturation. NFLU-treated males exhibited mixed effects in their genes in relation to spermatogenesis. Additionally, sex-related differences in the expression of the CYP450 genes responsible for detoxification were found. Overall, norfluoxetine acts as an endocrine-disrupting chemical and impacts gonadal serotonin levels and gene expression, potentially disrupting reproductive success of M. trossulus.
Collapse
Affiliation(s)
- Paulina Goździk
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Marszałka Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Debinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
2
|
Dhiman N, Deshwal S, Rishi V, Singhal N, Sandhir R. Zebrafish as a model organism to study sporadic Alzheimer's disease: Behavioural, biochemical and histological validation. Exp Neurol 2024; 383:115034. [PMID: 39490623 DOI: 10.1016/j.expneurol.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a global burden to the healthcare system with no viable treatment options till date. Rodents and primates have been extensively used as models for understanding AD pathogenesis and identifying therapeutic targets. However, the focus is now shifting towards developing alternate models. Zebrafish is emerging as a preferred model for neurodegenerative conditions because of its simple nervous system, highly conserved genome and short duration required to model disease condition. The present study is aimed to develop streptozotocin (STZ)-induced model of sporadic AD (sAD) in zebrafish. STZ was administered to adult zebrafish (4-6 mo) at different doses (1 to 50 mg/kg body weight, intracerebroventricularly). Kaplan-Meier survival analysis revealed time and dose dependent mortality in the zebrafish administered with STZ. Based on survival analysis, 1 to 10 mg/kg body weight of STZ was selected for behavioural, molecular and histological studies. STZ administered fish had anxiety and stress-like behaviour in novel tank and light/dark preference tests. STZ-induced cognitive and memory deficits assessed using novel object recognition and spatial alternation tests. Further, expression of markers of amyloidogenic pathway (appa and bace1) were increased in terms of mRNA and protein levels in a time and dose dependent manner following STZ administration. However, expression of non-amyloidogenic pathway mediator (adam10) was reduced at both mRNA and protein level. Histological assessment using hematoxylin and eosin, and Nissl stain revealed loss of neurons in STZ administered fish. The ratio of phosphor-tauser396/total-tau was increased in STZ administered fish. Based on these findings, 5 mg/kg body weight of STZ was found to be most appropriate dose to exhibit sAD phenotype. Mass spectrometric analysis confirmed the presence of amyloid beta oligomers in brains of STZ administered fish. Transmission electron microscopy also showed the presence of higher order insoluble amyloid fibrils with twists. Immunohistochemical analysis revealed amyloid beta deposits in brain of STZ administered fish. Golgi-cox staining indicated decreased number of dendrites, whereas microglia had increased density, span ratio, soma area and lacunarity. The results of the present study demonstrate presence of AD hallmarks and phenotype in zebrafish 7 days post STZ administration (5 mg/kg). The study validates the potential of STZ-induced sAD in zebrafish as a reliable model for studying pathophysiology and rapid screening of therapeutic molecules against sAD.
Collapse
Affiliation(s)
- Neha Dhiman
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India
| | - Sonam Deshwal
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, Punjab 140306, India
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, Punjab 140306, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
3
|
Jabri NA, Abed RMM, Habsi AA, Ansari A, Barry MJ. The impacts of microplastics on zebrafish behavior depend on initial personality state. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104561. [PMID: 39233253 DOI: 10.1016/j.etap.2024.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microplastic pollution is associated with inflammation, gut dysbiosis and behavioral changes in fish. Fish have distinct personality traits but the role of personality in behavioral toxicology is rarely considered. We classified zebrafish on four behavioral axes: boldness, anxiety, sociability and exploration tendency then exposed them to low- or high- concentrations of two types of polyethylene microplastics (low- and high-density) for 28 days. Behaviors, antioxidant enzymes (catalase and superoxide dismutase), and gut microbiome were then measured. There were direct effects of microplastics on boldness, anxiety and sociability. However, fish retained their initial behavioral tendencies. Exposure to all microplastic treatments reduced average swimming speed and decreased the time spent motionless. Microplastic exposure did not affect antioxidant enzymes but did cause significant changes in the composition of the gut microbiome. This study demonstrates that environmentally realistic concentrations of microplastics can alter fish behavior, but much of the variance in response can be explained by personality.
Collapse
Affiliation(s)
- Nawal Al Jabri
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Raeid M M Abed
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aziz Al Habsi
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aliya Ansari
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
4
|
Al Shuraiqi A, Abed RMM, Al-Habsi A, Barry MJ. Personality Affects Zebrafish Response to Sertraline. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:132-146. [PMID: 37861374 DOI: 10.1002/etc.5769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Sertraline is widely prescribed to treat anxiety and depression. Sertraline acts by blocking serotonin, norepinephrine, and dopamine transporters systems and has been detected in surface waters globally, where it may impact fish behavior. We classified zebrafish personality on three behavioral axes, boldness, anxiety, and sociability, assigning fish as either high or low in each category. The fish were exposed to nominal concentrations of 0, 5, 50, 500, or 5000 ng/L sertraline (measured concentrations: <10, 21.3, 370, and 2200 ng/L, respectively) to assess changes in boldness, anxiety, and sociability after 7 and 28 days. We also measured shoaling behavior and response to an alarm cue, and determined the gut microbiome of a subset of fish. After 7 days there was no overall effect of sertraline on boldness, but there was an interaction between initial personality and sex, with a stronger impact on females classified as low-boldness personality. Sertraline reduced sociability in all treatments compared with the control, but there was again an interaction between sertraline and initial personality. Fish that were classified as low-sociability responded more strongly to sertraline. After 7 days, fish exposed to a nominal concentration of 5000 ng/L (2200 ng/L measured) showed higher anxiety than controls, with the overall pattern of initial behavior retained. After 28 days, similar patterns were observed, but with higher variation. There was only a weak association between the gut microbiome and personality. Overall, the study highlights the importance of considering initial behavior, which can affect response to pollutants. Our results may also be applicable to human studies and provide a mechanism to explain why different individuals respond differently to the drug. Environ Toxicol Chem 2024;43:132-146. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Raeid M M Abed
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | - Aziz Al-Habsi
- Biology Department, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
5
|
Ferreira CSS, Venâncio C, Kille P, Oliveira M. Are early and young life stages of fish affected by paroxetine? A case study with Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165706. [PMID: 37499832 DOI: 10.1016/j.scitotenv.2023.165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Paroxetine (PAR) is a selective serotonin reuptake inhibitor (SSRI) antidepressant increasingly detected in surface waters worldwide. Its environmental presence raises concerns about the potential detrimental effects on non-target organisms. Thus, this study aimed to increase knowledge on PAR's potential environmental impacts, assessing the effects of commercial formulation (PAR-c) and active ingredient (PAR-a) on fish. Therefore, the short-term exposure effects of PAR-c and PAR-a were assessed on zebrafish (Danio rerio) embryos/larvae to determine the most toxic formulation [through median lethal (LC50) and effective concentrations (EC50)]. PAR-c and PAR-a induced morphological abnormalities (scoliosis) in a dose-dependent manner from 96 hours post-fertilization onwards, suggesting the involvement of a fully functional biotransformation system. As PAR-c exhibited higher toxicity, it was selected to be tested in the subsequent stage (juvenile stage), which was more sensitive (lower LC50). PAR-c significantly decreased fish swimming activity and disrupted fish stress response. Overall, the results highlight the ability of PAR-c to adversely affect fish swimming performance, an effect that persisted even after exposure ceases (21-day depuration), suggesting that PAR-c may impair individual fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Cátia Venâncio
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
6
|
Ferreira CSS, Soares SC, Kille P, Oliveira M. Identifying knowledge gaps in understanding the effects of selective serotonin reuptake inhibitors (SSRIs) on fish behaviour. CHEMOSPHERE 2023; 335:139124. [PMID: 37285976 DOI: 10.1016/j.chemosphere.2023.139124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are a class of antidepressants increasingly prescribed to treat patients with clinical depression. As a result of the significant negative impact of the COVID-19 pandemic on the population's mental health, its consumption is expected to increase even more. The high consumption of these substances leads to their environmental dissemination, with evidence of their ability to compromise molecular, biochemical, physiological, and behavioural endpoints in non-target organisms. This study aimed to provide a critical review of the current knowledge regarding the effects of SSRI antidepressants on fish ecologically relevant behaviours and personality-dependent traits. A literature review shows limited data concerning the impact of fish personality on their responses to contaminants and how such responses could be influenced by SSRIs. This lack of information may be attributable to a lack of widely adopted standardized protocols for evaluating behavioural responses in fish. The existing studies examining the effects of SSRIs across various biological levels overlook the intra-specific variations in behaviour and physiology associated with different personality patterns or coping styles. Consequently, some effects may remain undetected, such as variations in coping styles and the capacity to handle environmental stressors. This oversight could potentially result in long-term effects with ecological implications. Data support the need for more studies to understand the impact of SSRIs on personality-dependent traits and how they may impair fitness-related behaviours. Given the considerable cross-species similarity in the personality dimensions, the collected data may allow new insights into the correlation between personality and animal fitness.
Collapse
Affiliation(s)
- Carla S S Ferreira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Sandra C Soares
- William James Center for Research (WJRC), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal; Center for Health Technology and Services Research (CINTESIS), Department of Education and Psychology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Miguel Oliveira
- Centre for Marine and Environmental Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
7
|
Zhang R, Qiao C, Liu Q, He J, Lai Y, Shang J, Zhong H. A Reliable High-Throughput Screening Model for Antidepressant. Int J Mol Sci 2021; 22:ijms22179505. [PMID: 34502414 PMCID: PMC8430800 DOI: 10.3390/ijms22179505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Depression is the most frequent affective disorder and is the leading cause of disability worldwide. In order to screen antidepressants and explore molecular mechanisms, a variety of animal models were used in experiments, but there is no reliable high-throughput screening method. Zebrafish is a common model organism for mental illness such as depression. In our research, we established chronic unpredictable mild stress (CUMS) models in C57BL/6 mice and zebrafish; the similarities in behavior and pathology suggest that zebrafish can replace rodents as high-throughput screening organisms. Stress mice (ip., 1 mg/kg/d, 3 days) and zebrafish (10 mg/L, 20 min) were treated with reserpine. As a result, reserpine caused depression-like behavior in mice, which was consistent with the results of the CUMS mice model. Additionally, reserpine reduced the locomotor ability and exploratory behavior of zebrafish, which was consistent with the results of the CUMS zebrafish model. Further analysis of the metabolic differences showed that the reserpine-induced zebrafish depression model was similar to the reserpine mice model and the CUMS mice model in the tyrosine metabolism pathway. The above results showed that the reserpine-induced depression zebrafish model was similar to the CUMS model from phenotype to internal metabolic changes and can replace the CUMS model for antidepressants screening. Moreover, the results from this model were obtained in a short time, which can shorten the cycle of drug screening and achieve high-throughput screening. Therefore, we believe it is a reliable high-throughput screening model.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Caili Qiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiuyan Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen He
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yifan Lai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.S.); (H.Z.)
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; (R.Z.); (C.Q.); (Q.L.); (J.H.); (Y.L.)
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (J.S.); (H.Z.)
| |
Collapse
|
8
|
Philibert DA, Lyons DD, Tierney KB. Early-life exposure to weathered, unweathered and dispersed oil has persisting effects on ecologically relevant behaviors in sheepshead minnow. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111289. [PMID: 32949839 DOI: 10.1016/j.ecoenv.2020.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
The Deepwater Horizon oil spill released 3.19 million barrels of crude oil into the Gulf of Mexico, making it the largest oil spill in U.S. history. Weathering and the application of dispersants can alter the solubility of compounds within crude oil, thus modifying the acute toxicity of the crude oil to aquatic life. The primary aim of our study was to determine the lasting impact of early-life stage sheepshead minnow (Cyprinodon variegatus variegatus) exposure to weathered, unweathered and dispersed crude oil on prey capture, male aggression, novel object interaction and global DNA methylation. Embryos were exposed from 1 to 10 dpf to water accommodations of crude oil and were raised to adulthood in artificial seawater. Our results suggest exposure to crude oil did not result in lasting impairment of complex behavioral responses of male sheepshead minnow. Exposure to dispersed weathered oil, however, decreased border dwelling in response to a novel object (i.e. decreased anxiety). Principal component analysis revealed that exposure to weathered oil had no overarching effect, but that unweathered crude oil increased variability in exploratory behaviors but decreased variability in anxiety-associated behaviors. Further work is needed to understand the effects of oil exposure on fish behavior and the potential ecological impact of subtle behavioral changes in fishes.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; Huntsman Marine Science Centre, St. Andrews, NB, E5B 2L7, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
9
|
Kellner M, Olsén KH. Divergent Response to the SSRI Citalopram in Male and Female Three-Spine Sticklebacks (Gasterosteus aculeatus). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 79:478-487. [PMID: 33151376 PMCID: PMC7688600 DOI: 10.1007/s00244-020-00776-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/12/2020] [Indexed: 06/09/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are psychotropic pharmaceuticals used as antidepressants. SSRIs are commonly found in surface waters in populated areas across the globe. They exert their effect by blocking the serotonin re-uptake transporter in the presynaptic nerve ending. The present study examined whether behavioural effects to exposure to SSRI citalopram depend on personality and sex in the stickleback (Gasterosteus aculeatus). Three aspects of stickleback behaviour are examined: feeding behaviour, aggression, and boldness. We exposed sticklebacks to 350-380 ng/l citalopram for 3 weeks. Feeding and aggressive behaviour were recorded before and after exposure, whereas scototaxis behaviour was tested after exposure. The results show treatment effects in feeding and aggressive behaviour. Feeding is suppressed only in the male group (χ2 = 20.4, P < 0.001) but not in the females (χ2 = 0.91, P = 0.339). Aggressive behaviour was significantly affected by treatment (χ2 = 161.9, P < 0.001), sex (χ2 = 86.3, P < 0.001), and baseline value (χ2 = 58.8, P < 0.001). Aggressiveness was suppressed by citalopram treatment. In addition, the fish showed no change in aggression and feeding behaviour over time regardless of sex and treatment, which indicate personality traits. Only females are affected by treatment in the scototaxis test. The exposed females spent significantly (χ2 = 5.02, P = 0.050) less time in the white zone than the female controls.
Collapse
Affiliation(s)
- Martin Kellner
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden
| | - K Håkan Olsén
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Alfred Nobels allé 7, 141 89, Huddinge, Sweden.
| |
Collapse
|
10
|
Soares SM, Kirsten K, Pompermaier A, Maffi VC, Koakoski G, Woloszyn M, Barreto RE, Barcellos LJG. Sex segregation affects exploratory and social behaviors of zebrafish according to controlled housing conditions. Physiol Behav 2020; 222:112944. [DOI: 10.1016/j.physbeh.2020.112944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
11
|
Abreu MS, Maximino C, Banha F, Anastácio PM, Demin KA, Kalueff AV, Soares MC. Emotional behavior in aquatic organisms? Lessons from crayfish and zebrafish. J Neurosci Res 2019; 98:764-779. [DOI: 10.1002/jnr.24550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/24/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Murilo S. Abreu
- Bioscience Institute University of Passo Fundo (UPF) Passo Fundo Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
| | - Caio Maximino
- The International Zebrafish Neuroscience Research Consortium (ZNRC) Slidell LA USA
- Institute of Health and Biological Studies Federal University of Southern and Southeastern Pará, Unidade III Marabá Brazil
| | - Filipe Banha
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Pedro M. Anastácio
- Department of Landscape, Environment and Planning MARE – Marine and Environmental Sciences Centre University of Évora Évora Portugal
| | - Konstantin A. Demin
- Institute of Experimental Medicine Almazov National Medical Research Center Ministry of Healthcare of Russian Federation St. Petersburg Russia
- Institute of Translational Biomedicine St. Petersburg State University St. Petersburg Russia
| | - Allan V. Kalueff
- School of Pharmacy Southwest University Chongqing China
- Ural Federal University Ekaterinburg Russia
| | - Marta C. Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources University of Porto Porto Portugal
| |
Collapse
|