1
|
Kloos S, Lüpke M, Estrella N, Ghada W, Kattge J, Bucher SF, Buras A, Menzel A. The linkage between functional traits and drone-derived phenology of 74 Northern Hemisphere tree species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175753. [PMID: 39182776 DOI: 10.1016/j.scitotenv.2024.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Tree phenology is a major component of the global carbon and water cycle, serving as a fingerprint of climate change, and exhibiting significant variability both within and between species. In the emerging field of drone monitoring, it remains unclear whether this phenological variability can be effectively captured across numerous tree species. Additionally, the drivers behind interspecific variations in the phenology of deciduous trees are poorly understood, although they may be linked to plant functional traits. In this study, we derived the start of season (SOS), end of season (EOS), and length of season (LOS) for 3099 individuals from 74 deciduous tree species of the Northern Hemisphere at a unique study site in southeast Germany using drone imagery. We validated these phenological metrics with in-situ data and analyzed the interspecific variability in terms of plant functional traits. The drone-derived SOS and EOS showed high agreement with ground observations of leaf unfolding (R2 = 0.49) and leaf discoloration (R2 = 0.79), indicating that this methodology robustly captures phenology at the individual level with low temporal and human effort. Both intra- and interspecific phenological variability were high in spring and autumn, leading to differences in the LOS of up to two months under almost identical environmental conditions. Functional traits such as seed dry mass, chromosome number, and continent of origin played significant roles in explaining interspecific phenological differences in SOS, EOS, and LOS, respectively. In total, 55 %, 39 %, and 45 % of interspecific variation in SOS, EOS, and LOS could be explained by the Boosted Regression Tree (BRT) models based on functional traits. Our findings encourage new research avenues in tree phenology and advance our understanding of the growth strategies of key tree species in the Northern Hemisphere.
Collapse
Affiliation(s)
- Simon Kloos
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Marvin Lüpke
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Nicole Estrella
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Wael Ghada
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Jens Kattge
- Max Planck Institute for Biogeochemistry, Hans-Knӧll-Straße 10, 07745 Jena, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany.
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany; Institute of Ecology and Evolution, Plant Biodiversity Group, Friedrich Schiller University Jena, Philosophenweg 16, 07743 Jena, Germany.
| | - Allan Buras
- TUM School of Life Sciences, Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany.
| | - Annette Menzel
- TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany.
| |
Collapse
|
2
|
Xavier A, Yadav R, Gowda V. Evolutionary patterns of variations in chromosome counts and genome sizes show positive correlations with taxonomic diversity in tropical gingers. AMERICAN JOURNAL OF BOTANY 2024; 111:e16334. [PMID: 38825815 DOI: 10.1002/ajb2.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/04/2024]
Abstract
PREMISE Cytogenetic traits such as an organism's chromosome number and genome size are taxonomically critical as they are instrumental in defining angiosperm diversity. Variations in these traits can be traced to evolutionary processes such as polyploidization, although geographic variations across cytogenetic traits remain underexplored. In the pantropical monocot family Zingiberaceae (~1500 species), cytogenetic traits have been well documented; however, the role of these traits in shaping taxonomic diversity and biogeographic patterns of gingers is not known. METHODS A time-calibrated Bayesian phylogenetic tree was constructed for 290 taxa covering three of the four subfamilies in Zingiberaceae. We tested models of chromosome number and genome size evolution within the family and whether lineage age, taxonomic diversity, and distributional range explain the variations in the cytogenetic traits. Tests were carried out at two taxonomic ranks: within Zingiberaceae and within genus Hedychium using correlations, generalized linear models and phylogenetic least square models. RESULTS The most frequent changes in chromosome number within Zingiberaceae were noted to be demi-polyploidization and polyploidization (~57% of the time), followed by ascending dysploidy (~27%). The subfamily Zingiberoideae showed descending dysploidy at its base, while Alpinioideae showed polyploidization at its internal nodes. Although chromosome counts and genome sizes did not corroborate with each other, suggesting that they are not equivalent; higher chromosome number variations and higher genome size variations were associated with higher taxonomic diversity and wider biogeographic distribution. CONCLUSIONS Within Zingiberaceae, multiple incidences of polyploidization were discovered, and cytogenetic events appear to have reduced the genome sizes and increased taxonomic diversity, distributional ranges and invasiveness.
Collapse
Affiliation(s)
- Aleena Xavier
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Ritu Yadav
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| | - Vinita Gowda
- Tropical Ecology and Evolution (TrEE) Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Chase MW, Samuel R, Leitch AR, Guignard MS, Conran JG, Nollet F, Fletcher P, Jakob A, Cauz-Santos LA, Vignolle G, Dodsworth S, Christenhusz MJM, Buril MT, Paun O. Down, then up: non-parallel genome size changes and a descending chromosome series in a recent radiation of the Australian allotetraploid plant species, Nicotiana section Suaveolentes (Solanaceae). ANNALS OF BOTANY 2023; 131:123-142. [PMID: 35029647 PMCID: PMC9904355 DOI: 10.1093/aob/mcac006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The extent to which genome size and chromosome numbers evolve in concert is little understood, particularly after polyploidy (whole-genome duplication), when a genome returns to a diploid-like condition (diploidization). We study this phenomenon in 46 species of allotetraploid Nicotiana section Suaveolentes (Solanaceae), which formed <6 million years ago and radiated in the arid centre of Australia. METHODS We analysed newly assessed genome sizes and chromosome numbers within the context of a restriction site-associated nuclear DNA (RADseq) phylogenetic framework. KEY RESULTS RADseq generated a well-supported phylogenetic tree, in which multiple accessions from each species formed unique genetic clusters. Chromosome numbers and genome sizes vary from n = 2x = 15 to 24 and 2.7 to 5.8 pg/1C nucleus, respectively. Decreases in both genome size and chromosome number occur, although neither consistently nor in parallel. Species with the lowest chromosome numbers (n = 15-18) do not possess the smallest genome sizes and, although N. heterantha has retained the ancestral chromosome complement, n = 2x = 24, it nonetheless has the smallest genome size, even smaller than that of the modern representatives of ancestral diploids. CONCLUSIONS The results indicate that decreases in genome size and chromosome number occur in parallel down to a chromosome number threshold, n = 20, below which genome size increases, a phenomenon potentially explained by decreasing rates of recombination over fewer chromosomes. We hypothesize that, more generally in plants, major decreases in genome size post-polyploidization take place while chromosome numbers are still high because in these stages elimination of retrotransposons and other repetitive elements is more efficient. Once such major genome size change has been accomplished, then dysploid chromosome reductions take place to reorganize these smaller genomes, producing species with small genomes and low chromosome numbers such as those observed in many annual angiosperms, including Arabidopsis.
Collapse
Affiliation(s)
- Mark W Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Rosabelle Samuel
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | - John G Conran
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Felipe Nollet
- Universidade Federal Rural de Pernambuco, Centro de Ciências Biológicas, Departamento de Botânica, Rua Manuel de Medeiros, S/N, Dois Irmãos, 52171-900 Recife, Pernambuco, Brazil
| | - Paul Fletcher
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Aljaž Jakob
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Luiz A Cauz-Santos
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Gabriel Vignolle
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Steven Dodsworth
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| | - Maarten J M Christenhusz
- Department of Environment and Agriculture, Curtin University, Perth, Western Australia, Australia
| | - Maria Teresa Buril
- ACEBB & SGC, School of Biological Sciences, The University of Adelaide, SA 5005Australia
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
4
|
Inferring Chromosome Number Changes Along a Phylogeny Using chromEvol. Methods Mol Biol 2023; 2545:175-187. [PMID: 36720813 DOI: 10.1007/978-1-0716-2561-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chromosome numbers have long been used for the identification of key genomic events such as polyploidy and dysploidy. These inferences are often challenging, particularly when applied to large phylogenies, or clades in which more than a few chromosome number transitions had occurred. Here we describe the chromEvol computational framework that infers shifts in chromosome numbers along a phylogeny using probabilistic models of chromosome number change. Given chromosome count data and an associated phylogeny, chromEvol identifies such patterns by fitting probabilistic models of chromosome number evolution to the data. We describe the chromEvol workflow using available online tools, including the specification of the desired models, the examination of model fit to the data, and the inference of ploidy levels. The pipeline can be used by the wide scientific community and requires no previous computational or programming skills.
Collapse
|
5
|
Elliott TL, Zedek F, Barrett RL, Bruhl JJ, Escudero M, Hroudová Z, Joly S, Larridon I, Luceño M, Márquez-Corro JI, Martín-Bravo S, Muasya AM, Šmarda P, Thomas WW, Wilson KL, Bureš P. Chromosome size matters: genome evolution in the cyperid clade. ANNALS OF BOTANY 2022; 130:999-1014. [PMID: 36342743 PMCID: PMC9851305 DOI: 10.1093/aob/mcac136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/03/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS While variation in genome size and chromosome numbers and their consequences are often investigated in plants, the biological relevance of variation in chromosome size remains poorly known. Here, we examine genome and mean chromosome size in the cyperid clade (families Cyperaceae, Juncaceae and Thurniaceae), which is the largest vascular plant lineage with predominantly holocentric chromosomes. METHODS We measured genome size in 436 species of cyperids using flow cytometry, and augment these data with previously published datasets. We then separately compared genome and mean chromosome sizes (2C/2n) amongst the major lineages of cyperids and analysed how these two genomic traits are associated with various environmental factors using phylogenetically informed methods. KEY RESULTS We show that cyperids have the smallest mean chromosome sizes recorded in seed plants, with a large divergence between the smallest and largest values. We found that cyperid species with smaller chromosomes have larger geographical distributions and that there is a strong inverse association between mean chromosome size and number across this lineage. CONCLUSIONS The distinct patterns in genome size and mean chromosome size across the cyperids might be explained by holokinetic drive. The numerous small chromosomes might function to increase genetic diversity in this lineage where crossovers are limited during meiosis.
Collapse
Affiliation(s)
- Tammy L Elliott
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - František Zedek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Russell L Barrett
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Jeremy J Bruhl
- Botany and N.C.W. Beadle Herbarium, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Marcial Escudero
- Department of Plant Biology and Ecology, University of Seville, Reina Mercedes 6, 41012 Seville, Spain
| | - Zdenka Hroudová
- Institute of Botany of the Czech Academy of Sciences, 252 43 Průhonice, Czech Republic
- National Museum, Department of Botany, Cirkusová 1740, 193 00 Prague 9, Czech Republic
| | - Simon Joly
- Montreal Botanical Garden, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101, Sherbrooke East, Montreal, QC H1X 2B2, Canada
| | - Isabel Larridon
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Systematic and Evolutionary Botany Lab, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | - Modesto Luceño
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - José Ignacio Márquez-Corro
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - Santiago Martín-Bravo
- Botany Area, Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, ctra. de Utrera km. 1, 41013, Seville, Spain
| | - A Muthama Muasya
- Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag X3, Rondebosch, Cape Town 7701, South Africaand
| | - Petr Šmarda
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | | | - Karen L Wilson
- National Herbarium of New South Wales, Australian Institute of Botanical Science, Australian Botanic Garden, Locked Bag 6002, Mount Annan, New South Wales 2567, Australia
| | - Petr Bureš
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
6
|
Mehravi S, Karimzadeh G, Kordenaeej A, Hanifei M. Mixed-Ploidy and Dysploidy in Hypericum perforatum: A Karyomorphological and Genome Size Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223068. [PMID: 36432797 PMCID: PMC9695836 DOI: 10.3390/plants11223068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/13/2023]
Abstract
Karyomorphology and genome size of 15 St John's wort (Hypericum perforatum L.) populations are reported for the first time. Root tips and fresh young leaves were used for karyological studies and flow cytometric (FCM) measurements, respectively. The chromosome length varied from 0.81 µm to 1.16 µm, and chromosome types were determined as "m". Eight different somatic chromosome numbers were found (2n = 16, 22, 24, 26, 28, 30, 32, 38). Based on the observed basic (x) chromosome numbers of x = 8, 11, 13, 14, 15, 19, this may correspond to diploid (2x), triploid (3x), tetraploid (4x), respectively. Interestingly, we found mixoploidy (3x - 4x) in the root tips of one of the populations. Hybridization, polyploidy and dysploid variation may be the main factors associated with the chromosome number evolution of this species. FCM showed that 2C DNA contents vary from 0.87 to 2.02 pg, showing more than a 2-fold variation. The mean amount of 2C DNA/chromosome and the mean of monoploid genome size were not proportional to ploidy.
Collapse
Affiliation(s)
- Shaghayegh Mehravi
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Ghasem Karimzadeh
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| | - Alaeddin Kordenaeej
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Shahed, Tehran 33191-18651, Iran
| | - Mehrdad Hanifei
- Department of Plant Genetics and Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-336, Iran
| |
Collapse
|
7
|
Olovnikov AM. Eco-crossover, or environmentally regulated crossing-over, and natural selection are two irreplaceable drivers of adaptive evolution: Eco-crossover hypothesis. Biosystems 2022; 218:104706. [DOI: 10.1016/j.biosystems.2022.104706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 12/31/2022]
|
8
|
Afonso Neto PC, Micolino R, Cardoso DC, Cristiano MP. Phylogenetic Reconstruction of the Ancestral Chromosome Number of the Genera Anochetus Mayr, 1861 and Odontomachus Latreille, 1804 (Hymenoptera: Formicidae: Ponerinae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.829989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent phylogenetic and molecular data are changing our knowledge about the relations between species and evolutionary processes resulting in the chromosome variation observed in ants (Hymenoptera: Formicidae). Ants exhibit remarkable variations in morphology, behavior, karyotypes, and chromosome structure. By assembling genetic and chromosome information about the trap-jaw ants from the subfamily Ponerinae, we reconstructed the phylogenetic relationships that inferred the monophyletic condition between the Anochetus and Odontomachus genera and estimated their ancestral haploid chromosome number. According to our inferences, these clades have an ancestral haploid chromosome number n = 15. The most recent common ancestor of Anochetus and Odontomachus has arisen between the Early Paleocene and the Early Eocene periods (time of the most recent common ancestor). In the Anochetus genus, we observed maintenance of the ancestral chromosome number estimated here in most species. This also suggests that pericentric inversions were the primary chromosomal rearrangement modulating the karyotype evolution of this genus. However, a reduction from n = 15–14 is observed in Anochetus emarginatus and Anochetus cf. madaraszi, which likely occurred by centromeric fusion. In contrast, the increase from the ancestral karyotype number in Anochetus horridus suggested centromeric fissions. Odontomachus showed maintenance of the ancestral chromosome number in the “rixosus group” and several gains in all species from the “haematodus group.” Our findings suggest that centromeric fissions and pericentric rearrangements lead to chromosomal changes in trap-jaw ants. Considering the ancestral state estimated here, changes in chromosome morphology are likely due to pericentric inversions, and chromosome number increases are likely due to centric fissions. The higher number of acrocentric or telocentric chromosomes in the karyotypes with n < 15 haploid chromosomes supports such an idea.
Collapse
|
9
|
Rice A, Mayrose I. Model adequacy tests for probabilistic models of chromosome-number evolution. THE NEW PHYTOLOGIST 2021; 229:3602-3613. [PMID: 33226654 DOI: 10.1111/nph.17106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/18/2020] [Indexed: 05/29/2023]
Abstract
Chromosome number is a central feature of eukaryote genomes. Deciphering patterns of chromosome-number change along a phylogeny is central to the inference of whole genome duplications and ancestral chromosome numbers. ChromEvol is a probabilistic inference tool that allows the evaluation of several models of chromosome-number evolution and their fit to the data. However, fitting a model does not necessarily mean that the model describes the empirical data adequately. This vulnerability may lead to incorrect conclusions when model assumptions are not met by real data. Here, we present a model adequacy test for likelihood models of chromosome-number evolution. The procedure allows us to determine whether the model can generate data with similar characteristics as those found in the observed ones. We demonstrate that using inadequate models can lead to inflated errors in several inference tasks. Applying the developed method to 200 angiosperm genera, we find that in many of these, the best-fitting model provides poor fit to the data. The inadequacy rate increases in large clades or in those in which hybridizations are present. The developed model adequacy test can help researchers to identify phylogenies whose underlying evolutionary patterns deviate substantially from current modelling assumptions and should guide future methods development.
Collapse
Affiliation(s)
- Anna Rice
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
10
|
Carta A, Bedini G, Peruzzi L. A deep dive into the ancestral chromosome number and genome size of flowering plants. THE NEW PHYTOLOGIST 2020; 228:1097-1106. [PMID: 32421860 DOI: 10.1111/nph.16668] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 05/22/2023]
Abstract
Chromosome number and genome variation in flowering plants have stimulated growing speculation about the ancestral chromosome number of angiosperms, but estimates so far remain equivocal. We used a probabilistic approach to model haploid chromosome number (n) changes along a phylogeny embracing more than 10 000 taxa, to reconstruct the ancestral chromosome number of the common ancestor of extant angiosperms and the most recent common ancestor for single angiosperm families. Independently, we carried out an analysis of 1C genome size evolution, including over 5000 taxa. Our analyses revealed an ancestral haploid chromosome number for angiosperms of n = 7, a diploid status, and an ancestral 1C of 1.73 pg. For 160 families, inferred ancestral n are provided for the first time. Both descending dysploidy and polyploidy played crucial roles in chromosome number evolution. While descending dysploidy is equally distributed early and late across the phylogeny, polyploidy is detected mainly towards the tips. Similarly, 1C genome size also increases (or decreases) significantly in late-branching lineages. Therefore, no evidence exists of a clear link between ancestral chromosome numbers and ancient polyploidization events, suggesting that further insights are needed to elucidate the organization of genome packaging into chromosomes.
Collapse
Affiliation(s)
- Angelino Carta
- Department of Biology, Botany Unit, University of Pisa, via Derna 1, Pisa, I-56126, Italy
| | - Gianni Bedini
- Department of Biology, Botany Unit, University of Pisa, via Derna 1, Pisa, I-56126, Italy
| | - Lorenzo Peruzzi
- Department of Biology, Botany Unit, University of Pisa, via Derna 1, Pisa, I-56126, Italy
| |
Collapse
|
11
|
Poe S, Anderson C, Barnett J. On the Selection and Analysis of Clades in Comparative Evolutionary Studies. Syst Biol 2020; 70:190-196. [PMID: 32196114 DOI: 10.1093/sysbio/syaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/01/2020] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Researchers commonly present results of comparative studies of taxonomic groups. In this review, we criticize the focus on named clades, usually, comparably ranked groups such as families or orders, for comparative evolutionary analyses and question the general practice of using clades as units of analysis. The practice of analyzing sets of named groups persists despite widespread appreciation that the groups we have chosen to name are based on subjective human concerns rather than objective properties of nature. We demonstrate an effect of clade selection on results in one study and present some potential alternatives to selecting named clades for analysis that are relatively objective in clade choice. However, we note that these alternatives are only partial solutions for clade-based studies. The practice of analyzing named clades obviously is biased and problematic, but its issues portend broader problems with the general approach of employing clades as units of analysis. Most clade-based studies do not account for the nonindependence of clades, and the biological insight gained from demonstrating some pattern among a particular arbitrary sample of groups is arguable. [Clades; comparative biology; taxonomic groups.].
Collapse
Affiliation(s)
- Steven Poe
- Department of Biology, University of New Mexico, Castetter Hall, Albuquerque, NM 87131, USA
| | - Christopher Anderson
- Department of Biology, University of New Mexico, Castetter Hall, Albuquerque, NM 87131, USA
| | - Joseph Barnett
- Department of Biology, University of New Mexico, Castetter Hall, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Costa L, Jimenez H, Carvalho R, Carvalho-Sobrinho J, Escobar I, Souza G. Divide to Conquer: Evolutionary History of Allioideae Tribes (Amaryllidaceae) Is Linked to Distinct Trends of Karyotype Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:320. [PMID: 32318079 PMCID: PMC7155398 DOI: 10.3389/fpls.2020.00320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Allioideae (e.g., chives, garlics, onions) comprises three mainly temperate tribes: Allieae (800 species from the northern hemisphere), Gilliesieae (80 South American species), and Tulbaghieae (26 Southern African species). We reconstructed the phylogeny of Allioideae (190 species plus 257 species from Agapanthoideae and Amaryllidoideae) based on ITS, matK, ndhF, and rbcL to investigate its historical biogeography and karyotype evolution using newly generated cytomolecular data for Chilean Gilliesieae genera Gethyum, Miersia, Solaria, and Speea. The crown group of Allioideae diversified ∼62 Mya supporting a Gondwanic origin for the subfamily and vicariance as the cause of the intercontinental disjunction of the tribes. Our results support the hypothesis of the Indian tectonic plate carrying Allieae to northern hemisphere ('out-of-India' hypothesis). The colonization of the northern hemisphere (∼30 Mya) is correlated with a higher diversification rate in Allium associated to stable x = 8, increase of polyploidy and the geographic expansion in Europe and North America. Tulbaghieae presented x = 6, but with numerical stability (2n = 12). In contrast, the tribe Gilliesieae (x = 6) varied considerably in genome size (associated with Robertsonian translocations), rDNA sites distribution and chromosome number. Our data indicate that evolutionary history of Allioideae tribes is linked to distinct trends of karyotype evolution.
Collapse
Affiliation(s)
- Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Horace Jimenez
- Laboratory of Plant Cytogenetics, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Reginaldo Carvalho
- Laboratory of Plant Cytogenetics, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Jefferson Carvalho-Sobrinho
- Laboratory of Plant Cytogenetics, Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil
| | - Inelia Escobar
- Department of Botany, University of Concepción, Concepción, Chile
| | - Gustavo Souza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|