1
|
Leburu E, Qiao Y, Wang Y, Yang J, Liang S, Yu W, Yuan S, Duan H, Huang L, Hu J, Hou H. Flexible electronics for heavy metal ion detection in water: a comprehensive review. Biomed Microdevices 2024; 26:30. [PMID: 38913209 DOI: 10.1007/s10544-024-00710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 06/25/2024]
Abstract
Flexible electronics offer a versatile, rapid, cost-effective and portable solution to monitor water contamination, which poses serious threat to the environment and human health. This review paper presents a comprehensive exploration of the versatile platforms of flexible electronics in the context of heavy metal ion detection in water systems. The review overviews of the fundamental principles of heavy metal ion detection, surveys the state-of-the-art materials and fabrication techniques for flexible sensors, analyses key performance metrics and limitations, and discusses future opportunities and challenges. By highlighting recent advances in nanomaterials, polymers, wireless integration, and sustainability, this review aims to serve as an essential resource for researchers, engineers, and policy makers seeking to address the critical challenge of heavy metal contamination in water resources. The versatile promise of flexible electronics is thoroughly elucidated to inspire continued innovation in this emerging technology arena.
Collapse
Affiliation(s)
- Ely Leburu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yuting Qiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Yanshen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Liang Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
- State Key Laboratory of Coal Combustion, Huazhong University of Science of and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, 430074, P.R. China.
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
| |
Collapse
|
2
|
Xu X, Xue P, Gao M, Li Y, Xu Z, Wei Y, Zhang Z, Liu Y, Wang L, Liu H, Cheng B. Assembled one-dimensional nanowires for flexible electronic devices via printing and coating: Techniques, applications, and perspectives. Adv Colloid Interface Sci 2023; 321:102987. [PMID: 37852138 DOI: 10.1016/j.cis.2023.102987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/26/2023] [Indexed: 10/20/2023]
Abstract
The rapid progress in flexible electronic devices has necessitated continual research into nanomaterials, structural design, and fabrication processes. One-dimensional nanowires, characterized by their distinct structures and exceptional properties, are considered essential components for various flexible electronic devices. Considerable attention has been directed toward the assembly of nanowires, which presents significant advantages. Printing and coating techniques can be used to assemble nanowires in a relatively simple, efficient, and cost-competitive manner and exhibit potential for scale-up production in the foreseeable future. This review aims to provide an overview of nanowire assembly using printing and coating techniques, such as bar coating, spray coating, dip coating, blade coating, 3D printing, and so forth. The application of assembled nanowires in flexible electronic devices is subsequently discussed. Finally, further discussion is presented on the potential and challenges of flexible electronic devices based on assembled nanowires via printing and coating.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pan Xue
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Meng Gao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yibin Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yu Wei
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Han Y, Cui Y, Liu X, Wang Y. A Review of Manufacturing Methods for Flexible Devices and Energy Storage Devices. BIOSENSORS 2023; 13:896. [PMID: 37754130 PMCID: PMC10526154 DOI: 10.3390/bios13090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Given the advancements in modern living standards and technological development, conventional smart devices have proven inadequate in meeting the demands for a high-quality lifestyle. Therefore, a revolution is necessary to overcome this impasse and facilitate the emergence of flexible electronics. Specifically, there is a growing focus on health detection, necessitating advanced flexible preparation technology for biosensor-based smart wearable devices. Nowadays, numerous flexible products are available on the market, such as electronic devices with flexible connections, bendable LED light arrays, and flexible radio frequency electronic tags for storing information. The manufacturing process of these devices is relatively straightforward, and their integration is uncomplicated. However, their functionality remains limited. Further research is necessary for the development of more intricate applications, such as intelligent wearables and energy storage systems. Taking smart wear as an example, it is worth noting that the current mainstream products on the market primarily consist of bracelet-type health testing equipment. They exhibit limited flexibility and can only be worn on the wrist for measurement purposes, which greatly limits their application diversity. Flexible energy storage and flexible display also face the same problem, so there is still a lot of room for development in the field of flexible electronics manufacturing. In this review, we provide a brief overview of the developmental history of flexible devices, systematically summarizing representative preparation methods and typical applications, identifying challenges, proposing solutions, and offering prospects for future development.
Collapse
Affiliation(s)
| | | | | | - Yaqun Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
4
|
Hasan MR, Sharma P, Suleman S, Mukherjee S, Celik EG, Timur S, Pilloton R, Narang J. Papertronics: Marriage between Paper and Electronics Becoming a Real Scenario in Resource-Limited Settings. ACS APPLIED BIO MATERIALS 2023; 6:1368-1379. [PMID: 36926800 DOI: 10.1021/acsabm.2c01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Integrating electronic applications with paper, placed next to or below printed images or graphics, can further expand the possible uses of paper substrates. Consuming paper as a substrate in the field of electronics can lead to significant innovations toward papertronics applications as paper comprises various advantages like being disposable, inexpensive, biodegradable, easy to handle, simple to use, and easily available. All of these advantages will definitely spur the advancement of the electronics field, but unfortunately, putting electronics on paper is not an easy task because, compared to plastics, the paper surface is not just rough but also porous. For example, in the case of lateral flow assay testing the sensor response is delayed if the pore size of the paper is enormous. This might be a disadvantage for most electrical devices printed directly on paper. Still, some methods make it compatible when fit with a rough, absorbent surface of the paper. Building electronic devices on a standard paper substrate have sparked much interest because of its lightweight, environmental friendliness, minimal cost, and simple fabrication. A slew of improvements have been achieved in recent years to make paper electronics perform better in various applications, including transistors, batteries, and displays. In addition, flexible electronics have gained much interest in human-machine interaction and wireless sensing. This review briefly examines the origins and fabrication of paper electronics and then moves on to applications and exciting possible paths for paper-based electronics.
Collapse
Affiliation(s)
- Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shouvik Mukherjee
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.,Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, Rome I-00015, Italy
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
5
|
Wang J, Jin Y, Wang K, Wang X, Xiao F. Facile Transfer of a Transparent Silver Nanowire Pattern to a Soft Substrate Using Graphene Oxide as a Double-Sided Adhesion-Tuning Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5709-5719. [PMID: 36683282 DOI: 10.1021/acsami.2c21697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silver nanowires (AgNWs) have been employed in various optoelectronic devices as transparent electrodes. However, it remains a great challenge to facilely pattern silver nanowires to realize desirable soft skin devices. Here, we develop an intact transfer method via a double-layered adhesion regulator of graphene oxide (GO) enabling complete transfer of a silver nanowire pattern from a tough substrate onto soft polydimethylsiloxane (PDMS) and flexible polyethylene (PE). We achieve positive and negative patterns simultaneously when selectively transferring silver nanowire patterns. The resulting patterned AgNW electrodes have uniform conductivity and long-term stability. The underlying mechanism of the clean transfer is thoroughly investigated via transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). GO plays a role in reducing the adhesion of AgNW to the donor tough substrate and enhancing adhesion of AgNW to the target soft substrate simultaneously. Finally, we demonstrate the utility of the patterned electrodes as transparent sensors detecting body motion. This work offers an effective solution to the challenging patterning problem of silver nanowires on a hydrophobic soft substrate, which is compatible with the soft component in emerging smart skin or wearable electronics.
Collapse
Affiliation(s)
- Jianzhong Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yunxia Jin
- Institute for Health Innovation & Technology, National University of Singapore, 14 Medical Drive, 117599 Singapore
| | - Kaiqing Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiaocun Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Fei Xiao
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
6
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
7
|
Yao S, Zhou W, Hinson R, Dong P, Wu S, Ives J, Hu X, Huang H, Zhu Y. Ultrasoft Porous 3D Conductive Dry Electrodes for Electrophysiological Sensing and Myoelectric Control. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101637. [PMID: 36276406 PMCID: PMC9581336 DOI: 10.1002/admt.202101637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 05/12/2023]
Abstract
Biopotential electrodes have found broad applications in health monitoring, human-machine interactions, and rehabilitation. Here, we report the fabrication and applications of ultrasoft breathable dry electrodes that can address several challenges for their long-term wearable applications - skin compatibility, wearability, and long-term stability. The proposed electrodes rely on porous and conductive silver nanowire based nanocomposites as the robust mechanical and electrical interface. The highly conductive and conformable structure eliminates the necessity of conductive gel while establishing a sufficiently low electrode-skin impedance for high-fidelity electrophysiological sensing. The introduction of gas-permeable structures via a simple and scalable method based on sacrificial templates improves breathability and skin compatibility for applications requiring long-term skin contact. Such conformable and breathable dry electrodes allow for efficient and unobtrusive monitoring of heart, muscle, and brain activities. In addition, based on the muscle activities captured by the electrodes and a musculoskeletal model, electromyogram-based neural-machine interfaces were realized, illustrating the great potential for prosthesis control, neurorehabilitation, and virtual reality.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Weixin Zhou
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert Hinson
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Penghao Dong
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jasmine Ives
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - He Huang
- Joint Department of Biomedical Engineering at University of North Carolina-Chapel Hill and NC State University, Chapel Hill/Raleigh, North Carolina 27599/27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
8
|
Yang Y, Duan S, Zhao H. Advances in constructing silver nanowire-based conductive pathways for flexible and stretchable electronics. NANOSCALE 2022; 14:11484-11511. [PMID: 35912705 DOI: 10.1039/d2nr02475f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With their soaring technological demand, flexible and stretchable electronics have attracted many researchers' attention for a variety of applications. The challenge which was identified a decade ago and still remains, however, is that the conventional electrodes based on indium tin oxide (ITO) are not suitable for ultra-flexible electronic devices. The main reason is that ITO is brittle and expensive, limiting device performance and application. Thus, it is crucial to develop new materials and processes to construct flexible and stretchable electrodes with superior quality for next-generation soft devices. Herein, various types of conductive nanomaterials as candidates for flexible and stretchable electrodes are briefly reviewed. Among them, silver nanowire (AgNW) is selected as the focus of this review, on account of its excellent conductivity, superior flexibility, high technological maturity, and significant presence in the research community. To fabricate a reliable AgNW-based conductive network for electrodes, different processing technologies are introduced, and the corresponding characteristics are compared and discussed. Furthermore, this review summarizes strategies and the latest progress in enhancing the conductive pathway. Finally, we showcase some exemplary applications and provide some perspectives about the remaining technical challenges for future research.
Collapse
Affiliation(s)
- Yuanhang Yang
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| | - Shun Duan
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Zhao
- Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, BioTech One, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
9
|
Noh Y, Kim GY, Lee H, Shin J, An K, Kumar M, Lee D. A review on intense pulsed light process as post-treatment for metal oxide thin films and nanostructures for device application. NANOTECHNOLOGY 2022; 33:272001. [PMID: 35358953 DOI: 10.1088/1361-6528/ac6314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
The intense pulsed light (IPL) post-treatment process has attracted great attention in the device fabrication due to its versatility and rapidity particularly for solution process functional structures in devices, flexible/printed electronics, and continuous manufacturing process. The metal oxide materials inherently have multi-functionality and have been widely used in form of thin films or nanostructures in device application such as thin film transistors, light emitting diodes, solar cells, supercapacitors, etc. The IPL treatment enhances the physical and/or chemical properties of the functional metal oxide through photothermal effects. However, most metal oxides are transparent to most range of visible light and require more energy for post-treatment. In this review, we have summarized the IPL post-treatment processes for metal oxide thin films and nanostructures in device applications. The sintering and annealing of metal oxides using IPL improved the device performances by employing additional light absorbing layer or back-reflector. The IPL process becomes an innovative versatile post-treatment process in conjunction with multi-functional metal oxides in near-future device applications.
Collapse
Affiliation(s)
- Youngwook Noh
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gyu Young Kim
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul, Republic of Korea
| | - Horim Lee
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jaehak Shin
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul, Republic of Korea
| | - Kunsik An
- Department of Mechatronics Engineering, Konkuk University, Chungju, Republic of Korea
| | - Manoj Kumar
- Department of Physics, Starex University, Haryana, India
| | - Dongjin Lee
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Huang Q, Zhu Y. Patterning of Metal Nanowire Networks: Methods and Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60736-60762. [PMID: 34919389 DOI: 10.1021/acsami.1c14816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the advance in flexible and stretchable electronics, one-dimensional nanomaterials such as metal nanowires have drawn much attention in the past 10 years or so. Metal nanowires, especially silver nanowires, have been recognized as promising candidate materials for flexible and stretchable electronics. Owing to their high electrical conductivity and high aspect ratio, metal nanowires can form electrical percolation networks, maintaining high electrical conductivity under deformation (e.g., bending and stretching). Apart from coating metal nanowires for making large-area transparent conductive films, many applications require patterned metal nanowires as electrodes and interconnects. Precise patterning of metal nanowire networks is crucial to achieve high device performances. Therefore, a high-resolution, designable, and scalable patterning of metal nanowire networks is important but remains a critical challenge for fabricating high-performance electronic devices. This review summarizes recent advances in patterning of metal nanowire networks, using subtractive methods, additive methods of nanowire dispersions, and printing methods. Representative device applications of the patterned metal nanowire networks are presented. Finally, challenges and important directions in the area of the patterning of metal nanowire networks for device applications are discussed.
Collapse
Affiliation(s)
- Qijin Huang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
11
|
Yoo D, Won DJ, Cho W, Kim S, Kim J. High-Resolution and Facile Patterning of Silver Nanowire Electrodes by Solvent-Free Photolithographic Technique Using UV-Curable Pressure Sensitive Adhesive Film. SMALL METHODS 2021; 5:e2101049. [PMID: 34928033 DOI: 10.1002/smtd.202101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Patterning of silver nanowires (AgNWs) used in fabricating flexible and transparent electrodes (FTEs) is essential for constructing a variety of optoelectronic devices. However, patterning AgNW electrodes using a simple, inexpensive, high-resolution, designable, and scalable process remains a challenge. Therefore, herein a novel solvent-free photolithographic technique using a UV-curable pressure sensitive adhesive (PSA) film for patterning AgNWs is introduced. The UV-curable PSA film can be selectively patterned by photopolymerization under UV exposure through a photomask. The AgNWs embedded in the non-photocured adhesive areas of the film are firmly held by a crosslinked network of photocurable resin when the patterned film is attached to the AgNW-coated substrate and additionally irradiated by UV light. After peeling off the film, the positive pattern of AgNW electrodes remains on the substrate, while the negative pattern is transferred to the film. This solvent-free photolithographic technique, which does not use toxic solvents, provides superior pattern features, such as fine line widths and spacings, sharp line edges, and low roughness. Therefore, the developed technique could be successfully applied in the development of flexible and transparent optoelectronic devices, such as a self-cleaning electro-wetting-on-dielectric (EWOD) devices, transparent heaters, and FTEs.
Collapse
Affiliation(s)
- Dongwoo Yoo
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Dong-Joon Won
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woosung Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seonghyeon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Joonwon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
12
|
Dimitriou E, Michailidis N. Printable conductive inks used for the fabrication of electronics: an overview. NANOTECHNOLOGY 2021; 32:502009. [PMID: 33735843 DOI: 10.1088/1361-6528/abefff] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
In recent years, a wide range of electronic materials with a great diversity in their chemical and physical properties has been patterned by printing techniques on a variety of substrates. Nanotechnology-based materials appear to be the most promising thereof, increasing the resolution of the printed raster and enhancing the electrical properties of the final patterns. Conductive nanoparticle inks are the main building block of all printed electronic devices and circuit boards, forming their fundamental structure and integrated low-resistance circuit interconnects, antennae, contact electrodes within transistors etc. A plethora of both conventional and novel printing techniques have been employed with nanoparticle-based inks for the fabrication of conductive patterns, dictating different limitations for the properties of the printed inks. Although several articles have reviewed printing techniques of nanomaterials, a comprehensive review on physicochemical properties that need to be considered in order to develop nanoparticle-based conductive inks, sufficiently compatible with each printing technique, is missing. This review firstly summarizes a wide range of printing techniques that are of high potential for printing electronics and then narrows them down to those applied with conductive nanoparticle inks. Next, it focuses on the typical properties of nanoparticle-based conductive inks (chemical composition, particle size and shape, solids loading, ink viscosity and surface tension) and suggests parameters that need to be taken into account when preparing conductive nanotechnology-based inks, corresponding the requirements of each printing technique. General principles that determine the electrical conductivity of the printed patterns are outlined. Lastly, future prospects on the development of novel printable materials are laid out.
Collapse
Affiliation(s)
- Evgenia Dimitriou
- Physical Metallurgy Laboratory, Department of Mechanical Engineering, School of Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| | - Nikolaos Michailidis
- Physical Metallurgy Laboratory, Department of Mechanical Engineering, School of Engineering, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece
| |
Collapse
|
13
|
Lu HC, Liao YC. Direct Printed Silver Nanowire Strain Sensor for Early Extravasation Detection. NANOMATERIALS 2021; 11:nano11102583. [PMID: 34685021 PMCID: PMC8540525 DOI: 10.3390/nano11102583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022]
Abstract
In this study, we presented a wearable sensor patch for the early detection of extravasation by using a simple, direct printing process. Silver nanowire (AgNW) ink was first formulated to provide necessary rheological properties to print patterns on flexible plastic sheets. By adjusting printing parameters, alignments of AgNWs in the printed patterns were controlled to enhance the resistance change under stretching conditions. A resistive strain-sensing device was then fabricated by printing patterned electrodes on a stretchable film for skin attachment. The designed sensor pattern was able to detect forces from a specific direction from the resistance change. Moreover, the sensor showed excellent sensitivity (gauge factor (GF) = 100 at 50% strain) and could be printed in small dimensions. Sensors of millimeter size were printed in an array and were used for multiple detection points in a large area to detect extravasation at small volumes (<0.5 mL) at accurate bump location.
Collapse
|
14
|
Inkjet Printing of Flexible Transparent Conductive Films with Silver Nanowires Ink. NANOMATERIALS 2021; 11:nano11061571. [PMID: 34203673 PMCID: PMC8232118 DOI: 10.3390/nano11061571] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The inkjet printing process is a promising electronic printing technique for large-scale, printed, flexible and stretchable electronics because of features such as its high manufacturing speed, environmental friendliness, simple process, low cost, accurate positioning, and so on. As the base material of printed conductive patterns, conductive ink is the foundation of the development of printed electronics technology, and directly affects the performance and the quality of electronic products. In this paper, conductive ink with silver nanowires (AgNWs) was prepared, with AgNWs of lengths of 2–5 µm and diameters of 20 nm or so, isopropyl alcohol and ethylene glycol as the mixed solvents, and modified polysilane as the wetting agent. We discussed the relationship between the formula of the AgNWs ink and the surface tension, viscosity, contact angle between ink droplet and poly(ethylene) terephthalate (PET) surface, as well as the film-forming properties of the ink. Further, we analyzed the effects of the number of printed layers and the ink concentration of the AgNWs on the microstructures, photoelectric properties and accuracy of the printed patterns, as well as the change in the sheet resistance of the film during different bending cycles. The experimental results show that flexible transparent conductive patterns with a light transmittance of 550 nm of 83.1–88.4% and a sheet resistance of 34.0 Ω∙sq−1–78.3 nm∙sq−1 can be obtained by using AgNWs ink of 0.38 mg∙mL−1 to 0.57 mg∙mL−1, a poly (ethylene terephthalate) (PET) substrate temperature of 40 °C, a nozzle temperature of 35 °C, and heat treated at 60 °C for 10 min. These performances indicate the excellent potential of the inkjet printing of AgNWs networks for developing flexible transparent conductive film.
Collapse
|
15
|
Zavanelli N, Kim J, Yeo WH. Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2973. [PMID: 34072779 PMCID: PMC8197924 DOI: 10.3390/ma14112973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.
Collapse
Affiliation(s)
- Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Jihoon Kim
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Kumar A, Shaikh MO, Chuang CH. Silver Nanowire Synthesis and Strategies for Fabricating Transparent Conducting Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:693. [PMID: 33802059 PMCID: PMC8000035 DOI: 10.3390/nano11030693] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022]
Abstract
One-dimensional metal nanowires, with novel functionalities like electrical conductivity, optical transparency and high mechanical stiffness, have attracted widespread interest for use in applications such as transparent electrodes in optoelectronic devices and active components in nanoelectronics and nanophotonics. In particular, silver nanowires (AgNWs) have been widely researched owing to the superlative thermal and electrical conductivity of bulk silver. Herein, we present a detailed review of the synthesis of AgNWs and their utilization in fabricating improved transparent conducting electrodes (TCE). We discuss a range of AgNW synthesis protocols, including template assisted and wet chemical techniques, and their ability to control the morphology of the synthesized nanowires. Furthermore, the use of scalable and cost-effective solution deposition methods to fabricate AgNW based TCE, along with the numerous treatments used for enhancing their optoelectronic properties, are also discussed.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Muhammad Omar Shaikh
- Sustainability Science and Engineering Program, Tunghai University, Taichung 407, Taiwan
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
17
|
Abstract
Abstract
In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide. AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron microscope, X-ray photoemission spectroscopy, and UV–Vis spectroscopy techniques. The obtained results indicate the formation of mixed mesoporous Ag2O and AgO NW thin films. The Ag2O phase of silver oxide appears after 300 s of oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity.
Graphic abstract
Collapse
|
18
|
Lu S, Franklin AD. Printed carbon nanotube thin-film transistors: progress on printable materials and the path to applications. NANOSCALE 2020; 12:23371-23390. [PMID: 33216106 DOI: 10.1039/d0nr06231f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Printing technologies have attracted significant attention owing to their potential use in the low-cost manufacturing of custom or large-area flexible electronics. Among the many printable electronic materials that have been explored, semiconducting carbon nanotubes (CNTs) have shown increasing promise based on their exceptional electrical and mechanical properties, relative stability in air, and compatibility with several printing techniques to form semiconducting thin films. These attractive attributes make printed CNT thin films promising for applications including, but not limited to, sensors and display backplanes - at the heart of which is electronics' most versatile device: the transistor. In this review, we present a summary of recent advancements in the field of printed carbon nanotube thin-film transistors (CNT-TFTs). In addition to an introduction of different printing techniques, together with their strengths and limitations, we discuss key aspects of ink/material selection and processing of various device components, including the CNT channels, contacts, and gate insulators. It is clear that printed CNT-TFTs are rapidly advancing, but there remain challenges, which are discussed along with current techniques to resolve them and future developments towards practical applications from these devices. There has been interest in low-cost, printable transistors for many years and the CNT-TFTs show great promise for delivering, but will not become a reality without further research advancement.
Collapse
Affiliation(s)
- Shiheng Lu
- Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
19
|
Basak I, Nowicki G, Ruttens B, Desta D, Prooth J, Jose M, Nagels S, Boyen HG, D’Haen J, Buntinx M, Deferme W. Inkjet Printing of PEDOT:PSS Based Conductive Patterns for 3D Forming Applications. Polymers (Basel) 2020; 12:polym12122915. [PMID: 33291806 PMCID: PMC7762030 DOI: 10.3390/polym12122915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
This paper presents the formulation, inkjet printing, and vacuum forming of a conductive and stretchable polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), ink on a stretchable and transparent thermoplastic polyurethane (TPU) substrate. The formulation of the conductive and stretchable ink is achieved by combining PEDOT:PSS with additional solvents, to achieve the right inkjet properties for drop-on-demand (DoD) inkjet printing. A conductive pattern can be printed from the 21 µm orifice on a flexible and stretchable TPU substrate, with a linewidth down to 44 µm. The properties of the printed pattern, in terms of sheet resistance, morphology, transparency, impact of weather conditions, and stretching are investigated and show sheet resistances up to 45 Ohm/sq and transparencies as high as 95%, which is comparable to indium tin oxide (ITO). Moreover, in contrast to ITO, one-time stretching up to 40% can be achieved, increasing the sheet resistance up to 214 Ohm/sq only, showing the great potential of this ink for one-time stretching. Finally, as a proof of this one-time stretching, the printed samples are vacuum formed around a 3D object, still showing sufficient conductivity to be applied as a capacitive touch sensor.
Collapse
Affiliation(s)
- Indranil Basak
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Gudrun Nowicki
- Institute for Materials Research, Packaging Technology Center, IMO-IMOMEC, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium; (G.N.); (M.B.)
| | - Bart Ruttens
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Derese Desta
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jeroen Prooth
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Manoj Jose
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Steven Nagels
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Hans-Gerd Boyen
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Jan D’Haen
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Institute for Materials Research, Packaging Technology Center, IMO-IMOMEC, Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium; (G.N.); (M.B.)
| | - Wim Deferme
- Hasselt University, Institute for Materials Research (IMO-IMOMEC), B-3590 Diepenbeek, Belgium; (I.B.); (B.R.); (D.D.); (J.P.); (M.J.); (S.N.); (H.-G.B.); (J.D.)
- IMEC vzw-Division IMOMEC, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
- Correspondence:
| |
Collapse
|
20
|
Maddipatla D, Narakathu BB, Atashbar M. Recent Progress in Manufacturing Techniques of Printed and Flexible Sensors: A Review. BIOSENSORS 2020; 10:E199. [PMID: 33287324 PMCID: PMC7761663 DOI: 10.3390/bios10120199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 12/11/2022]
Abstract
This review provides an outlook on some of the significant research work done on printed and flexible sensors. Printed sensors fabricated on flexible platforms such as paper, plastic and textiles have been implemented for wearable applications in the biomedical, defense, food, and environmental industries. This review discusses the materials, characterization methods, and fabrication methods implemented for the development of the printed and flexible sensors. The applications, challenges faced and future opportunities for the printed and flexible sensors are also presented in this review.
Collapse
Affiliation(s)
- Dinesh Maddipatla
- Electrical and Computer Engineering Department, Western Michigan University, Kalamazoo, MI 49006, USA; (B.B.N.); (M.A.)
| | | | | |
Collapse
|
21
|
Corzo D, Tostado-Blázquez G, Baran D. Flexible Electronics: Status, Challenges and Opportunities. FRONTIERS IN ELECTRONICS 2020. [DOI: 10.3389/felec.2020.594003] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
22
|
Li W, Yarali E, Bakytbekov A, Anthopoulos TD, Shamim A. Highly transparent and conductive electrodes enabled by scalable printing-and-sintering of silver nanowires. NANOTECHNOLOGY 2020; 31:395201. [PMID: 32531776 DOI: 10.1088/1361-6528/ab9c53] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver nanowires (Ag NWs) have good promised for flexible and transparent electronics. However, It remains an open question on how to achieve large-scale printing of Ag NWs with high optical transparency, electrical conductivity, and mechanical durability for practical applications, though extensive research has been conducted for more than a decade. In this work, we propose a possible solution that integrates screen printing of Ag NWs with flash-light sintering (FLS). We demonstrate that the use of low-concentration, screen-printable Ag NW ink enables large-area and high-resolution patterning of Ag NWs. A critical advantage comes from the FLS process that allows low-temperature processing, short operational time, and high output rate-characteristics that fit the scalable manufacturing. Importantly, we show that the resultant Ag NW patterns feature low sheet resistance (1.1-9.2 Ohm sq-1), high transparency (75.2-92.6%), and thus a remarkable figure of merit comparable to state of the art. These outstanding properties of Ag NW patterns, together with the scalable fabrication method we propose, would facilitate many Ag NW-based applications, such as transparent heaters, stretchable displays, and wearable devices; here, we demonstrate the novel design of flexible and transparent radio frequency 5G antennas.
Collapse
Affiliation(s)
- Weiwei Li
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Emre Yarali
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955- 6900, Saudi Arabia
| | - Azamat Bakytbekov
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Thomas D Anthopoulos
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955- 6900, Saudi Arabia
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Syntheses of Silver Nanowires Ink and Printable Flexible Transparent Conductive Film: A Review. COATINGS 2020. [DOI: 10.3390/coatings10090865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nowadays, flexible transparent conductive film (FTCF) is one of the important components of many flexible electronic devices. Due to comprehensive performances on optoelectronics, FTCF based on silver nanowires (AgNWs) networks have received great attention and are expected to be a new generation of transparent conductive film materials. Due to its simple process, printed electronic technology is now an important technology for the rapid production of low-cost and high-quality flexible electronic devices. AgNWs-based FTCF fabricated by using printed electronic technology is considered to be the most promising process. Here, the preparation and performance of AgNW ink are introduced. The current printing technologies are described, including gravure printing, screen printing and inkjet printing. In addition, the latest methods to improve the conductivity, adhesion, and stability of AgNWs-based FTCF are introduced. Finally, the applications of AgNWs-based FTCF in solar cells, transparent film heaters, optoelectronic devices, touch panel, and sensors are introduced in detail. Therefore, combining various printing technologies with AgNWs ink may provide more opportunities for the development of flexible electronic devices in the future.
Collapse
|
24
|
Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics. MATERIALS 2020; 13:ma13163587. [PMID: 32823736 PMCID: PMC7475884 DOI: 10.3390/ma13163587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022]
Abstract
Recent advances in nanomaterial preparation and printing technologies provide unique opportunities to develop flexible hybrid electronics (FHE) for various healthcare applications. Unlike the costly, multi-step, and error-prone cleanroom-based nano-microfabrication, the printing of nanomaterials offers advantages, including cost-effectiveness, high-throughput, reliability, and scalability. Here, this review summarizes the most up-to-date nanomaterials, methods of nanomaterial printing, and system integrations to fabricate advanced FHE in wearable and implantable applications. Detailed strategies to enhance the resolution, uniformity, flexibility, and durability of nanomaterial printing are summarized. We discuss the sensitivity, functionality, and performance of recently reported printed electronics with application areas in wearable sensors, prosthetics, and health monitoring implantable systems. Collectively, the main contribution of this paper is in the summary of the essential requirements of material properties, mechanisms for printed sensors, and electronics.
Collapse
|
25
|
Wan T, Guan P, Guan X, Hu L, Wu T, Cazorla C, Chu D. Facile Patterning of Silver Nanowires with Controlled Polarities via Inkjet-Assisted Manipulation of Interface Adhesion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34086-34094. [PMID: 32643927 DOI: 10.1021/acsami.0c07950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Facile patterning technologies of silver nanowires (AgNWs) with low-cost, high-resolution, designable, scalable, substrate-independent, and transferable characteristics are highly desired. However, it remains a grand challenge for any material processing method to fulfil all desirable features. Herein, a new patterning method is introduced by combining inkjet printing with adhesion manipulation of substrate interfaces. Both positive and negative patterns (i.e., AgNW grid and rectangular patterns) have been simultaneously achieved, and the pattern polarity can be reversed through adhesion modification with judiciously selected supporting layers. The electrical performance of the AgNW grids depends on the AgNW interlocking structure, manifesting a strong structure-property correlation. High-resolution and complex AgNW patterns with line width and spacing as small as 10 μm have been demonstrated through selective deposition of poly(methyl methacrylate) layers. In addition, customized AgNW patterns, such as logos and words, can be fabricated onto A4-size samples and subsequently transferred to targeted substrates, including Si wafers, a curved glass vial, and a beaker. This reported inkjet-assisted process therefore offers a new effective route to manipulate AgNWs for advanced device applications.
Collapse
Affiliation(s)
- Tao Wan
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Xinwei Guan
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Claudio Cazorla
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
26
|
Lee SH, Lee S. Cantilever Type Acceleration Sensors Made by Roll-to-Roll Slot-Die Coating. SENSORS 2020; 20:s20133748. [PMID: 32635459 PMCID: PMC7374456 DOI: 10.3390/s20133748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 11/29/2022]
Abstract
This paper presents the fabrication by means of roll-to-roll slot-die coating and characterization of air gap-based cantilever type capacitive acceleration sensors. As the mass of the sensor moves in the opposite direction of the acceleration, a capacitance change occurs. The sensor is designed to have a six layers structure with an air gap. Fabrication of the air gap and cantilever was enabled by coating and removing water-soluble PVA. The bottom electrode, the dielectric layer, and the sacrificial layer were formed using the roll-to-roll slot-die coating technique. The spacer, the top electrode, and the structural layer were formed by spin coating. Several kinds of experiments were conducted for characterization of the fabricated sensor samples. Experimental results show that accelerations of up to 3.6 g can be sensed with an average sensitivity of 0.00856 %/g.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Mechanical Design and Production Engineering, Konkuk University, Seoul 05029, Korea;
| | - Sangyoon Lee
- Department of Mechanical Engineering, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-3731
| |
Collapse
|
27
|
Kant T, Shrivas K, Ganesan V, Mahipal YK, Devi R, Deb MK, Shankar R. Flexible printed paper electrode with silver nano-ink for electrochemical applications. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104687] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Abstract
Solution-based printing approaches permit digital designs to be converted into physical objects by depositing materials in a layer-by-layer additive fashion from microscale to nanoscale resolution. The extraordinary adaptability of this technology to different inks and substrates has received substantial interest in the recent literature. In such a context, this review specifically focuses on the realization of inks for the deposition of ZnO, a well-known wide bandgap semiconductor inorganic material showing an impressive number of applications in electronic, optoelectronic, and piezoelectric devices. Herein, we present an updated review of the latest advancements on the ink formulations and printing techniques for ZnO-based nanocrystalline inks, as well as of the major applications which have been demonstrated. The most relevant ink-processing conditions so far explored will be correlated with the resulting film morphologies, showing the possibility to tune the ZnO ink composition to achieve facile, versatile, and scalable fabrication of devices of different natures.
Collapse
|
29
|
Yao S, Ren P, Song R, Liu Y, Huang Q, Dong J, O'Connor BT, Zhu Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902343. [PMID: 31464046 DOI: 10.1002/adma.201902343] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/27/2019] [Indexed: 05/02/2023]
Abstract
Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ping Ren
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Runqiao Song
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Qijin Huang
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Jingyan Dong
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
30
|
Tseng SH, Lyu LM, Hsiao KY, Ho WH, Lu MY. Surfactant-free synthesis of ultralong silver nanowires for durable transparent conducting electrodes. Chem Commun (Camb) 2020; 56:5593-5596. [DOI: 10.1039/d0cc01915a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study employed the surfactant-free growth of ultralong (∼50 μm) silver nanowires (AgNWs) with a high aspect ratio (more than 1000) by galvanic replacement.
Collapse
Affiliation(s)
- Sian-Hong Tseng
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Lian-Ming Lyu
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Wan-Hua Ho
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu 300
- Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu 300
- Taiwan
- High Entropy Materials Center
| |
Collapse
|
31
|
Yao S, Yang J, Poblete FR, Hu X, Zhu Y. Multifunctional Electronic Textiles Using Silver Nanowire Composites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31028-31037. [PMID: 31373192 DOI: 10.1021/acsami.9b07520] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Textiles represent an appealing platform for continuous wearable applications due to the exceptional combination of compliance, water vapor permeability, and comfortableness for long-term wear. We present mechanically and electrically robust integration of nanocomposites with textiles by laser scribing and heat press lamination. The simple and scalable integration technique enables multifunctional E-textiles without compromising the stretchability, wearability, and washability of textiles. The textile-integrated patterns exhibit small line width (135 μm), low sheet resistance (0.2 Ω/sq), low Young's modulus, good washability, and good electromechanical performance up to 50% strain, which is desirable for wearable and user-friendly electronic textiles. To demonstrate the potential utility, we developed an integrated textile patch comprising four dry electrophysiological electrodes, a capacitive strain sensor, and a wireless heater for electrophysiological monitoring, motion tracking, and thermotherapy, respectively. Beyond the applications demonstrated in this paper, the materials and methods presented here pave the way for various other wearable applications in health care, activity tracking, rehabilitation, sports medicine, and human-machine interactions.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Ji Yang
- MOE Key Laboratory for Intelligent Networks and Network Security , Xi'an Jiaotong University , Xi'an , Shaanxi 710049 , China
| | - Felipe R Poblete
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering , University of North Carolina-Chapel Hill and NC State University , Chapel Hill , North Carolina 27599 , United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States
- Joint Department of Biomedical Engineering , University of North Carolina-Chapel Hill and NC State University , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
32
|
Li Y, Yuan X, Yang H, Chao Y, Guo S, Wang C. One-Step Synthesis of Silver Nanowires with Ultra-Long Length and Thin Diameter to Make Flexible Transparent Conductive Films. MATERIALS 2019; 12:ma12030401. [PMID: 30696028 PMCID: PMC6384764 DOI: 10.3390/ma12030401] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
High aspect ratio silver nanowires (AgNWs) with ultra-long length and thin diameter were synthesized through bromine ion (Br−)-assisted one-step synthesis method. The bromine ions were used as pivotal passivating agent. When the molar ratio of Br−/Cl− was 1:4, the average diameter of AgNWs was as low as ~40 nm, the average length was as high as ~120 μm, and the aspect ratio reached 2500. Networks of AgNWs were fabricated using as-prepared high-quality AgNWs as conducting material and hydroxyethyl cellulose (HEC) as the adhesive polymer. As a result, a low sheet resistance down to ~3.5 Ω sq−1 was achieved with a concomitant transmittance of 88.20% and a haze of 4.12%. The ultra-low sheet resistance of conductive film was attributed to the long and thin AgNWs being able to form a more effective network. The adhesion of the AgNWs to the substrate was 0/5B (ISO/ASTM). The insights given in this paper provide the key guidelines for bromine ion-assisted synthesis of long and thin AgNWs, and further designing low-resistance AgNW-based conductive film for optoelectronic devices.
Collapse
Affiliation(s)
- Yuxiu Li
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Ximin Yuan
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Hongwei Yang
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Yunxiu Chao
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Shuailong Guo
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| | - Chuan Wang
- State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China.
| |
Collapse
|
33
|
Silver Nanowires from Sonication-Induced Scission. MICROMACHINES 2019; 10:mi10010029. [PMID: 30621161 PMCID: PMC6356813 DOI: 10.3390/mi10010029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 11/17/2022]
Abstract
Silver nanowires (AgNWs) have great potential to be used in the flexible electronics industry for their applications in flexible, transparent conductors due to high conductivity and light reflectivity. Those applications always involve size which strongly affects the optical and electrical properties of AgNWs. AgNWs of mean diameter 70 nm and mean length 12.5 μm were achieved by the polyol solvothermal method. Sonication-induced scission was used to obtain the small size AgNWs. The relationship between the size of AgNWs and the ultrasonic time, ultrasonic power, and concentration of AgNWs were studied. The results show that the length of AgNWs gradually reduces with the increase of the ultrasonic time and ultrasonic power, and with the decrease of concentration of AgNWs. Meanwhile, there is an existence of a limiting length below which fragmentation of AgNWs no longer occurs. Further, the mechanics of sonication-induced scission for the fragmentation of AgNWs was discussed.
Collapse
|