1
|
Liu Z, Li H, Huang X, Liu Q. Animal Models of Helicobacter pylori Infection and Vaccines: Current Status and Future Prospects. Helicobacter 2024; 29:e13119. [PMID: 39108210 DOI: 10.1111/hel.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 01/02/2025]
Abstract
Helicobacter pylori infection causes chronic gastritis, ulcers, and gastric cancer, making it a threat to human health. Despite the use of antibiotic therapy, the global prevalence of H. pylori infection remains high, necessitating early eradication measures. Immunotherapy, especially vaccine development, is a promising solution in this direction, albeit the selection of an appropriate animal model is critical in efficient vaccine production. Accordingly, we conducted a literature, search and summarized the commonly used H. pylori strains, H. pylori infection-related animal models, and models for evaluating H. pylori vaccines. Based on factors such as the ability to replicate human diseases, strain compatibility, vaccine types, and eliciting of immune responses, we systematically compared the advantages and disadvantages of different animal models, to obtain the informed recommendations. In addition, we have proposed novel perspectives on H. pylori-related animal models to advance research and vaccine evaluation for the prevention and treatment of diseases such as gastric cancer.
Collapse
Affiliation(s)
- Zhili Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
- HuanKui Academy, Nanchang University, Nanchang, China
| | - He Li
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Lei Y, Zhang R, Cai F. Role of MARK2 in the nervous system and cancer. Cancer Gene Ther 2024; 31:497-506. [PMID: 38302729 DOI: 10.1038/s41417-024-00737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
Microtubule-Affinity Regulating Kinase 2 (MARK2), a member of the serine/threonine protein kinase family, phosphorylates microtubule-associated proteins, playing a crucial role in cancer and neurodegenerative diseases. This kinase regulates multiple signaling pathways, including the WNT, PI3K/AKT/mTOR (PAM), and NF-κB pathways, potentially linking it to cancer and the nervous system. As a crucial regulator of the PI3K/AKT/mTOR pathway, the loss of MARK2 inhibits the growth and metastasis of cancer cells. MARK2 is involved in the excessive phosphorylation of tau, thus influencing neurodegeneration. Therefore, MARK2 emerges as a promising drug target for the treatment of cancer and neurodegenerative diseases. Despite its significance, the development of inhibitors for MARK2 remains limited. In this review, we aim to present detailed information on the structural features of MARK2 and its role in various signaling pathways associated with cancer and neurodegenerative diseases. Additionally, we further characterize the therapeutic potential of MARK2 in neurodegenerative diseases and cancer, and hope to facilitate basic research on MARK2 and the development of inhibitors targeting MARK2.
Collapse
Affiliation(s)
- Yining Lei
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ruyi Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, 437100, China.
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
3
|
Analysis of Genetic Relatedness between Gastric and Oral Helicobacter pylori in Patients with Early Gastric Cancer Using Multilocus Sequence Typing. Int J Mol Sci 2023; 24:ijms24032211. [PMID: 36768541 PMCID: PMC9917182 DOI: 10.3390/ijms24032211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
The oral cavity is the second most colonized site of Helicobacter pylori after the stomach. This study aimed to compare the genetic relatedness between gastric and oral H. pylori in Japanese patients with early gastric cancer through multilocus sequence typing (MLST) analysis using eight housekeeping genes. Gastric biopsy specimens and oral samples were collected from 21 patients with a fecal antigen test positive for H. pylori. The number of H. pylori allelic profiles ranged from zero to eight since the yield of DNA was small even when the nested PCR was performed. MLST analysis revealed that only one patient had a matching oral and gastric H. pylori genotype, suggesting that different genotypes of H. pylori inhabit the oral cavity and gastric mucosa. The phylogenetic analysis showed that oral H. pylori in six patients was similar to gastric H. pylori, implying that the two strains are related but not of the same origin, and those strains may be infected on separate occasions. It is necessary to establish a culture method for oral H. pylori to elucidate whether the oral cavity acts as the source of gastric infection, as our analysis was based on a limited number of allele sequences.
Collapse
|
4
|
Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345. [PMID: 35847376 PMCID: PMC9283667 DOI: 10.1016/j.mtbio.2022.100345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The recent spike in the instances of complex physiological host-microbe interactions has raised the demand for developing in vitro models that recapitulate the microbial microenvironment in the human body. Organoids are steadily emerging as an in vitro culture system that closely mimics the structural, functional, and genetic features of complex human organs, particularly for better understanding host-microbe interactions. Recent advances in organoid culture technology have become new avenues for assessing the pathogenesis of symbiotic interactions, pathogen-induced infectious diseases, and various other diseases. The co-cultures of organoids with microbes have shown great promise in simulating host-microbe interactions with a high level of complexity for further advancement in related fields. In this review, we provide an overview of bioengineering approaches for microbe-co-cultured organoids. Latest developments in the applications of microbe-co-cultured organoids to study human physiology and pathophysiology are also highlighted. Further, an outlook on future research on bioengineered organoid co-cultures for various applications is presented.
Collapse
|
5
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
6
|
Elucidated tumorigenic role of MAML1 and TWIST1 in gastric cancer is associated with Helicobacter pylori infection. Microb Pathog 2021; 162:105304. [PMID: 34818576 DOI: 10.1016/j.micpath.2021.105304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) has a fundamental role in tumor initiation, progression, and metastasis. Helicobacter pylori (HP) induces EMT and thus causes gastric cancer (GC) by deregulating multiple signaling pathways involved in EMT. TWIST1 and MAML1 have been confirmed to be critical inducers of EMT via diverse signaling pathways such as Notch signaling. This study aimed to investigate for the first time possible associations between TWIST1/MAML1 mRNA expression levels, HP infection, and clinicopathological characteristics in GC patients. METHOD TWIST1 and MAML1 mRNA expression levels were evaluated in tumoral and adjacent normal tissues in 73 GC patients using the quantitative reverse transcription PCR (RT-qPCR) method. PCR technique was also applied to examine the infection with HP in GC samples. RESULTS Upregulation of TWIST1 and MAML1 expression was observed in 35 (48%) and 34 (46.6%) of 73 tumor samples, respectively. Co-overexpression of these genes was found in 26 of 73 (35.6%) tumor samples; meanwhile, there was a significant positive correlation between MAML1 and TWIST1 mRNA expression levels (P < 0.001). MAML1 overexpression exhibited meaningful associations with advanced tumor stages (P = 0.006) and nodal metastases (P ˂ 0.001). 34 of 73 (46.6%) tumors tested positive for HP, and meanwhile, MAML1 expression was positively related with T (P = 0.05) and grade (P = 0.0001) in these HP-positive samples. Increased TWIST1 expression was correlated with patient sex (P = 0.035) and advanced tumor grade (P = 0.017) in HP-infected tumors. Furthermore, TWIST1 and MAML1 expression levels were inversely linked with histologic grade in HP-negative tumor samples (P = 0.021 and P = 0.048, respectively). CONCLUSION We propose TWIST1 and MAML1 as potential biomarkers of advanced-stage GC that determine the characteristics and aggressiveness of the disease. Based on accumulating evidence and our findings, they can be introduced as promising therapeutic targets to modify functional abnormalities in cells that promote GC progression. Moreover, HP may enhance GC growth and metastasis by disrupting TWIS1/MAML1 expression patterns and related pathways.
Collapse
|
7
|
Aguilar C, Alves da Silva M, Saraiva M, Neyazi M, Olsson IAS, Bartfeld S. Organoids as host models for infection biology - a review of methods. Exp Mol Med 2021; 53:1471-1482. [PMID: 34663936 PMCID: PMC8521091 DOI: 10.1038/s12276-021-00629-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Infectious diseases are a major threat worldwide. With the alarming rise of antimicrobial resistance and emergence of new potential pathogens, a better understanding of the infection process is urgently needed. Over the last century, the development of in vitro and in vivo models has led to remarkable contributions to the current knowledge in the field of infection biology. However, applying recent advances in organoid culture technology to research infectious diseases is now taking the field to a higher level of complexity. Here, we describe the current methods available for the study of infectious diseases using organoid cultures.
Collapse
Affiliation(s)
- Carmen Aguilar
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - Marta Alves da Silva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Mastura Neyazi
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| | - I. Anna S. Olsson
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC- Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Sina Bartfeld
- grid.8379.50000 0001 1958 8658Research Centre for Infectious Diseases, Institute for Molecular Infection Biology, Julius Maximilians Universität Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
8
|
Szymczak A, Ferenc S, Majewska J, Miernikiewicz P, Gnus J, Witkiewicz W, Dąbrowska K. Application of 16S rRNA gene sequencing in Helicobacter pylori detection. PeerJ 2020; 8:e9099. [PMID: 32440373 PMCID: PMC7229771 DOI: 10.7717/peerj.9099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is one of the major stomach microbiome components, promoting development of inflammation and gastric cancer in humans. H. pylori has a unique ability to transform into a coccoidal form which is difficult to detect by many diagnostic methods, such as urease activity detection, and even histopathological examination. Here we present a comparison of three methods for H. pylori identification: histological assessment (with eosin, hematoxylin, and Giemsa staining), polymerase chain reaction (PCR) detection of urease (ureA specific primers), and detection by 16S rRNA gene sequencing. The study employed biopsies from the antral part of the stomach (N = 40). All samples were assessed histologically which revealed H. pylori in eight patients. Bacterial DNA isolated from the bioptates was used as a template for PCR reaction and 16S rRNA gene sequencing that revealed H. pylori in 13 and in 20 patients, respectively. Thus, 16S rRNA gene sequencing was the most sensitive method for detection of H. pylori in stomach biopsy samples.
Collapse
Affiliation(s)
- Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Stanisław Ferenc
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Joanna Majewska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Gnus
- Medical Academy in Wroclaw, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
9
|
Mechanisms of the Epithelial-Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020; 9:cells9041055. [PMID: 32340207 PMCID: PMC7225971 DOI: 10.3390/cells9041055] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most common human pathogens, affecting half of the world’s population. Approximately 20% of the infected patients develop gastric ulcers or neoplastic changes in the gastric stroma. An infection also leads to the progression of epithelial–mesenchymal transition within gastric tissue, increasing the probability of gastric cancer development. This paper aims to review the role of H. pylori and its virulence factors in epithelial–mesenchymal transition associated with malignant transformation within the gastric stroma. The reviewed factors included: CagA (cytotoxin-associated gene A) along with induction of cancer stem-cell properties and interaction with YAP (Yes-associated protein pathway), tumor necrosis factor α-inducing protein, Lpp20 lipoprotein, Afadin protein, penicillin-binding protein 1A, microRNA-29a-3p, programmed cell death protein 4, lysosomal-associated protein transmembrane 4β, cancer-associated fibroblasts, heparin-binding epidermal growth factor (HB-EGF), matrix metalloproteinase-7 (MMP-7), and cancer stem cells (CSCs). The review summarizes the most recent findings, providing insight into potential molecular targets and new treatment strategies for gastric cancer.
Collapse
|
10
|
Detection of Helicobacter pylori Microevolution and Multiple Infection from Gastric Biopsies by Housekeeping Gene Amplicon Sequencing. Pathogens 2020; 9:pathogens9020097. [PMID: 32033301 PMCID: PMC7168683 DOI: 10.3390/pathogens9020097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the great efforts devoted to research on Helicobacter pylori, the prevalence of single-strain infection or H. pylori mixed infection and its implications in the mode of transmission of this bacterium are still controversial. In this study, we explored the usefulness of housekeeping gene amplicon sequencing in the detection of H. pylori microevolution and multiple infections. DNA was extracted from five gastric biopsies from four patients infected with distinct histopathological diagnoses. PCR amplification of six H. pylori-specific housekeeping genes was then assessed on each sample. Optimal results were obtained for the cgt and luxS genes, which were selected for amplicon sequencing. A total of 11,833 cgt and 403 luxS amplicon sequences were obtained, 2042 and 112 of which were unique sequences, respectively. All cgt and luxS sequences were clustered at 97% to 9 and 13 operational taxonomic units (OTUs), respectively. For each sample from a different patient, a single OTU comprised the majority of sequences in both genes, but more than one OTU was detected in all samples. These results suggest that multiple infections with a predominant strain together with other minority strains are the main way by which H. pylori colonizes the human stomach.
Collapse
|
11
|
Zhang H, Liao Y, Zhang H, Wu J, Zheng D, Chen Z. Cytotoxin-associated gene A increases carcinogenicity of helicobacter pylori in colorectal adenoma. Int J Biol Markers 2020; 35:19-25. [PMID: 31971064 DOI: 10.1177/1724600819877193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the correlation of Helicobacter pylori (Hp) infection with disease risk and severity of colorectal adenoma, also to explore the association of cytotoxin-associated gene A (CagA) positive (CagA+)-Hp infection with gastrin and ki-67 expressions in colorectal adenoma patients. METHODS There were 1000 colorectal adenoma patients and 1500 controls consecutively enrolled, then Hp infection status was determined by 14C urea breath test and rapid urease test. Also, serum CagA expression and gastrin expression of colorectal adenoma patients were determined by enzyme-linked immunosorbent assay. Ki-67 expression in adenoma tissue of colorectal adenoma patients was assessed using immunohistochemistry. RESULTS Hp+ rate in colorectal adenoma patients (623 (62.3%)) was more elevated than that in controls (814 (54.3%)). Multivariate logistic regression model analysis disclosed that Hp+ was an independent risk factor for colorectal adenoma. Additionally, Hp+ was positively associated with tumor size and high-grade intraepithelial neoplasia in colorectal adenoma patients. Also, serum gastrin expression and intratumoral ki-67 expression were higher in Hp+ CagA+ patients and Hp+ CagA- patients compared to Hp- patients, and they were also higher in Hp+ CagA+ patients compared to Hp+ CagA- patients. CONCLUSION Hp infection positively associates with higher disease risk and worse disease conditions of colorectal adenoma, and CagA enhances the carcinogenicity of Hp in colorectal adenoma.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Yusheng Liao
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Hongfeng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| | - Zhitao Chen
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Clinical Research Center for Intestinal & Colorectal Diseases of Hubei Province; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, China
| |
Collapse
|
12
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|