1
|
Cesaroni CA, Pollazzon M, Mancini C, Rizzi S, Cappelletti C, Pizzi S, Frattini D, Spagnoli C, Caraffi SG, Zuntini R, Trimarchi G, Niceta M, Radio FC, Tartaglia M, Garavelli L, Fusco C. Case report: Expanding the phenotype of FOXP1-related intellectual disability syndrome and hyperkinetic movement disorder in differential diagnosis with epileptic seizures. Front Neurol 2023; 14:1207176. [PMID: 37521304 PMCID: PMC10382204 DOI: 10.3389/fneur.2023.1207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Objective We aimed to report on previously unappreciated clinical features associated with FOXP1-related intellectual disability (ID) syndrome, a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, and language delay, with or without autistic features. Methods We performed whole-exome sequencing (WES) to molecularly characterize an individual presenting with ID, epilepsy, autism spectrum disorder, behavioral problems, and facial dysmorphisms as major features. Results WES allowed us to identify a previously unreported de novo splice site variant, c.1429-1G>T (NM_032682.6), in the FOXP1 gene (OMIM*605515) as the causative event underlying the phenotype. Clinical reassessment of the patient and revision of the literature allowed us to refine the phenotype associated with FOXP1 haploinsufficiency, including hyperkinetic movement disorder and flat angiomas as associated features. Interestingly, the patient also has an asymmetric face and choanal atresia and a novel de novo variant of the CHD7 gene. Conclusion We suggest that FOXP1-related ID syndrome may also predispose to the development of hyperkinetic movement disorders and flat angiomas. These features could therefore require specific management of this condition.
Collapse
Affiliation(s)
- Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Verdile V, Svetoni F, La Rosa P, Ferrante G, Cesari E, Sette C, Paronetto M. EWS splicing regulation contributes to balancing Foxp1 isoforms required for neuronal differentiation. Nucleic Acids Res 2022; 50:3362-3378. [PMID: 35253879 PMCID: PMC8989529 DOI: 10.1093/nar/gkac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Alternative splicing is a key regulatory process underlying the amplification of genomic information and the expansion of proteomic diversity, particularly in brain. Here, we identify the Ewing sarcoma protein (EWS) as a new player of alternative splicing regulation during neuronal differentiation. Knockdown of EWS in neuronal progenitor cells leads to premature differentiation. Transcriptome profiling of EWS-depleted cells revealed global changes in splicing regulation. Bioinformatic analyses and biochemical experiments demonstrated that EWS regulates alternative exons in a position-dependent fashion. Notably, several EWS-regulated splicing events are physiologically modulated during neuronal differentiation and EWS depletion in neuronal precursors anticipates the splicing-pattern of mature neurons. Among other targets, we found that EWS controls the alternative splicing of the forkhead family transcription factor FOXP1, a pivotal transcriptional regulator of neuronal differentiation, possibly contributing to the switch of gene expression underlying the neuronal differentiation program.
Collapse
Affiliation(s)
- Veronica Verdile
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Francesca Svetoni
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Piergiorgio La Rosa
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Gabriele Ferrante
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Eleonora Cesari
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
| | - Claudio Sette
- GSTEP-Organoids Core Facility, IRCCS Fondazione Policlinico Agostino Gemelli, 00168 Rome, Italy
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Hearth, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| |
Collapse
|
3
|
Trelles MP, Levy T, Lerman B, Siper P, Lozano R, Halpern D, Walker H, Zweifach J, Frank Y, Foss-Feig J, Kolevzon A, Buxbaum J. Individuals with FOXP1 syndrome present with a complex neurobehavioral profile with high rates of ADHD, anxiety, repetitive behaviors, and sensory symptoms. Mol Autism 2021; 12:61. [PMID: 34588003 PMCID: PMC8482569 DOI: 10.1186/s13229-021-00469-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Background FOXP1 syndrome is an autosomal dominant neurodevelopmental disorder characterized by intellectual disability, developmental delay, speech and language delays, and externalizing behaviors. We previously evaluated nine children and adolescents with FOXP1 syndrome to better characterize its phenotype. We identified specific areas of interest to be further explored, namely autism spectrum disorder (ASD) and internalizing and externalizing behaviors.
Methods Here, we assess a prospective cohort of additional 17 individuals to expand our initial analyses and focus on these areas of interest. An interdisciplinary group of clinicians evaluated neurodevelopmental, behavioral, and medical features in participants. We report results from this cohort both alone, and in combination with the previous cohort, where possible.
Results Previous observations of intellectual disability, motor delays, and language deficits were confirmed. In addition, 24% of the cohort met criteria for ASD. Seventy-five percent of individuals met DSM-5 criteria for attention-deficit/hyperactivity disorder and 38% for an anxiety disorder. Repetitive behaviors were almost universally present (95%) even without a diagnosis of ASD. Sensory symptoms, in particular sensory seeking, were common. Limitations As FOXP1 syndrome is a rare disorder, sample size is limited. Conclusions These findings have important implications for the treatment and care of individuals with FOXP1 syndrome. Notably, standardized testing for ASD showed high sensitivity, but low specificity, when compared to expert consensus diagnosis. Furthermore, many individuals in our cohort who received diagnoses of attention-deficit/hyperactivity disorder or anxiety disorder were not being treated for these symptoms; therefore, our findings suggest that there may be immediate areas for improvements in treatment for some individuals. Supplementary Information The online version contains supplementary material available at 10.1186/s13229-021-00469-z.
Collapse
Affiliation(s)
- M Pilar Trelles
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Lerman
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paige Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Reymundo Lozano
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle Halpern
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hannah Walker
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Foss-Feig
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Lozano R, Gbekie C, Siper PM, Srivastava S, Saland JM, Sethuram S, Tang L, Drapeau E, Frank Y, Buxbaum JD, Kolevzon A. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2021; 13:18. [PMID: 33892622 PMCID: PMC8066957 DOI: 10.1186/s11689-021-09358-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
FOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.
Collapse
Affiliation(s)
- Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Catherine Gbekie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shubhika Srivastava
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Children's Heart Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swathi Sethuram
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elodie Drapeau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Wright WE, Li C, Zheng CX, Tucker HO. FOXP1 Interacts with MyoD to Repress its Transcription and Myoblast Conversion. JOURNAL OF CELLULAR SIGNALING 2021; 2:9-26. [PMID: 33554216 PMCID: PMC7861563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Forkhead transcription factors (TFs) often dimerize outside their extensive family, whereas bHLH transcription factors typically dimerize with E12/E47. Based on structural similarities, we predicted that a member of the former, Forkhead Box P1 (FOXP1), might heterodimerize with a member of the latter, MYOD1 (MyoD). Data shown here support this hypothesis and further demonstrate the specificity of this forkhead/myogenic interaction among other myogenic regulatory factors. We found that FOXP1-MyoD heterodimerization compromises the ability of MyoD to bind to E-boxes and to transactivate E box- containing promoters. We observed that FOXP1 is required for the full ability of MyoD to convert fibroblasts into myotubules. We provide a model in which FOXP1 displaces ID and E12/E47 to repress MyoD during the proliferative phase of myoblast differentiation. These data identify FOXP1 as a hitherto unsuspected transcriptional repressor of MyoD. We suggest that isolation of paired E-box and forkhead sites within 1 turn helical spacings provides potential for cooperative interactions among heretofore distinct classes of transcription factors.
Collapse
Affiliation(s)
- Woodring E. Wright
- Department of Cell Biology, UT Southwestern Medical School,
Dallas TX 75235, USA
| | - Chuan Li
- Department of Microbiology, University of Texas
Southwestern Medical Center, Dallas TX 75235, USA
| | - Chang-xue Zheng
- Department of Molecular Biosciences, the University of
Texas at Austin, Austin TX 78712, USA
| | - Haley O. Tucker
- Department of Molecular Biosciences, the University of
Texas at Austin, Austin TX 78712, USA,Correspondence should be addressed to Haley O.
Tucker;
| |
Collapse
|