1
|
Sun L, Yu Y, Peng Y, Wang D, Wang S, Noh I, Fang RH, Gao W, Zhang L. Platelet Membrane-Derived Nanodiscs for Neutralization of Endogenous Autoantibodies and Exogenous Virulence Factors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308327. [PMID: 38044300 DOI: 10.1002/smll.202308327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/08/2023] [Indexed: 12/05/2023]
Abstract
The multifaceted functions of platelets in various physiological processes have long inspired the development of therapeutic nanoparticles that mimic specific platelet features for disease treatment. Here, the development and characterization of platelet membrane-derived nanodiscs (PLT-NDs) as platelet decoys for biological neutralization is reported. In one application, PLT-NDs effectively bind with anti-platelet autoantibodies, thus blocking them from interacting with platelets. In a mouse model of thrombocytopenia, PLT-NDs successfully neutralize pathological anti-platelet antibodies, preventing platelet depletion and maintaining hemostasis. In another application, PLT-NDs effectively neutralize the cytotoxicity of bacterial virulence factors secreted by methicillin-resistant Staphylococcus aureus (MRSA). In a mouse model of MRSA infection, treatment with PLT-NDs leads to significant survival benefits for the infected mice. Additionally, PLT-NDs show good biocompatibility and biosafety, as demonstrated in acute toxicity studies conducted in mice. These findings underscore the potential of PLT-NDs as a promising platelet mimicry for neutralizing various biological agents that target platelets. Overall, this work expands the repertoire of platelet-mimicking nanomedicine by creating a unique disc-like nanostructure made of natural platelet membranes.
Collapse
Affiliation(s)
- Lei Sun
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yifei Peng
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Shuyan Wang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Landsem A, Emblem Å, Lau C, Christiansen D, Gerogianni A, Karlsen BO, Mollnes TE, Nilsson PH, Brekke OL. Complement C3b contributes to Escherichia coli-induced platelet aggregation in human whole blood. Front Immunol 2022; 13:1020712. [PMID: 36591264 PMCID: PMC9797026 DOI: 10.3389/fimmu.2022.1020712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Platelets have essential functions as first responders in the immune response to pathogens. Activation and aggregation of platelets in bacterial infections can lead to life-threatening conditions such as arterial thromboembolism or sepsis-associated coagulopathy. Methods In this study, we investigated the role of complement in Escherichia coli (E. coli)-induced platelet aggregation in human whole blood, using Multiplate® aggregometry, flow cytometry, and confocal microscopy. Results and Discussion We found that compstatin, which inhibits the cleavage of complement component C3 to its components C3a and C3b, reduced the E. coli-induced platelet aggregation by 42%-76% (p = 0.0417). This C3-dependent aggregation was not C3a-mediated as neither inhibition of C3a using a blocking antibody or a C3a receptor antagonist, nor the addition of purified C3a had any effects. In contrast, a C3b-blocking antibody significantly reduced the E. coli-induced platelet aggregation by 67% (p = 0.0133). We could not detect opsonized C3b on platelets, indicating that the effect of C3 was not dependent on C3b-fragment deposition on platelets. Indeed, inhibition of glycoprotein IIb/IIIa (GPIIb/IIIa) and complement receptor 1 (CR1) showed that these receptors were involved in platelet aggregation. Furthermore, aggregation was more pronounced in hirudin whole blood than in hirudin platelet-rich plasma, indicating that E. coli-induced platelet aggregation involved other blood cells. In conclusion, the E. coli-induced platelet aggregation in human whole blood is partly C3b-dependent, and GPIIb/IIIa and CR1 are also involved in this process.
Collapse
Affiliation(s)
- Anne Landsem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,*Correspondence: Anne Landsem,
| | - Åse Emblem
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Corinna Lau
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Dorte Christiansen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Alexandra Gerogianni
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway
| | - Tom Eirik Mollnes
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden,Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden,Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Ole-Lars Brekke
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital Trust, Bodø, Norway,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Mariotti A, Ezzraimi AE, Camoin-Jau L. Effect of antiplatelet agents on Escherichia coli sepsis mechanisms: A review. Front Microbiol 2022; 13:1043334. [PMID: 36569083 PMCID: PMC9780297 DOI: 10.3389/fmicb.2022.1043334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Despite ever-increasing improvements in the prognosis of sepsis, this condition remains a frequent cause of hospitalization and mortality in Western countries. Sepsis exposes the patient to multiple complications, including thrombotic complications, due to the ability of circulating bacteria to activate platelets. One of the bacteria most frequently implicated in sepsis, Escherichia coli, a Gram-negative bacillus, has been described as being capable of inducing platelet activation during sepsis. However, to date, the mechanisms involved in this activation have not been clearly established, due to their multiple characteristics. Many signaling pathways are thought to be involved. At the same time, reports on the use of antiplatelet agents in sepsis to reduce platelet activation have been published, with variable results. To date, their use in sepsis remains controversial. The aim of this review is to summarize the currently available knowledge on the mechanisms of platelet activation secondary to Escherichia coli sepsis, as well as to provide an update on the effects of antiplatelet agents in these pathological circumstances.
Collapse
Affiliation(s)
- Antoine Mariotti
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France
| | - Amina Ezzeroug Ezzraimi
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France
| | - Laurence Camoin-Jau
- Aix Marseille Univ., IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France,IHU Méditerranée Infection, Marseille, France,Haematology Laboratory, Hôpital de la Timone, APHM, Marseille, France,*Correspondence: Laurence Camoin-Jau,
| |
Collapse
|
4
|
Microscopic Description of Platelet Aggregates Induced by Escherichia coli Strains. Cells 2022; 11:cells11213495. [PMID: 36359892 PMCID: PMC9659130 DOI: 10.3390/cells11213495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
In addition to their role in haemostasis, platelets are also involved in the inflammatory and antimicrobial process. Interactions between pathogens and platelets, mediated by receptors can lead to platelet activation, which may be responsible for a granular secretion process or even aggregation, depending on the bacterial species. Granular secretion releases peptides with bactericidal activity as well as aggregating factors. To our knowledge, these interactions have been poorly studied for Escherichia coli (E. coli). Few studies have characterised the cellular organization of platelet-E. coli aggregates. The objective of our study was to investigate the structure of platelet aggregates induced by different E. coli strains as well as the ultrastructure of platelet-E. coli mixtures using a scanning and transmission electron microscopy (SEM and TEM) approach. Our results show that the appearance of platelet aggregates is mainly dependent on the strain used. SEM images illustrate the platelet activation and aggregation and their colocalisation with bacteria. Some E. coli strains induce platelet activation and aggregation, and the bacteria are trapped in the platelet magma. However, some strains do not induce significant platelet activation and are found in close proximity to the platelets. The structure of the E. coli strains might explain the results obtained.
Collapse
|
5
|
Ezzeroug Ezzraimi A, Hannachi N, Mariotti A, Rolain JM, Camoin-Jau L. Platelets and Escherichia coli: A Complex Interaction. Biomedicines 2022; 10:biomedicines10071636. [PMID: 35884941 PMCID: PMC9313189 DOI: 10.3390/biomedicines10071636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/26/2022] Open
Abstract
Apart from their involvement in hemostasis, platelets have been recognized for their contribution to inflammation and defense against microbial agents. The interaction between platelets and bacteria has been well studied in the model of Staphylococcus and Streptococcus but little described in Gram-negative bacteria, especially Escherichia coli. Being involved in the hemolytic uremic syndrome as well as sepsis, it is important to study the mechanisms of interaction between platelets and E. coli. Results of the published studies are heterogeneous. It appears that some strains interact with platelets through the toll-like receptor-4 (TLR-4) and others through the Fc gamma glycoprotein. E. coli mainly uses lipopolysaccharide (LPS) to activate platelets and cause the release of antibacterial molecules, but this is not the case for all strains. In this review, we describe the different mechanisms developed in previous studies, focusing on this heterogeneity of responses that may depend on several factors; mainly, the strain studied, the structure of the LPS and the platelet form used in the studies. We can hypothesize that the structure of O-antigen and an eventual resistance to antibiotics might explain this difference.
Collapse
Affiliation(s)
- Amina Ezzeroug Ezzraimi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadji Hannachi
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- Département de Pharmacie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Antoine Mariotti
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
- Hematology Department, Timone Hospital, APHM, Boulevard Jean Moulin, 13005 Marseille, France
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
| | - Laurence Camoin-Jau
- IRD, APHM, MEPHI, IHU Méditerranée Infection, Aix Marseille Université, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; (A.E.E.); (N.H.); (A.M.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France
- Hematology Department, Timone Hospital, APHM, Boulevard Jean Moulin, 13005 Marseille, France
- Correspondence: ; Tel.: +33-4-9138-6049; Fax: +33-4-9138-9155
| |
Collapse
|
6
|
Ezzeroug Ezzraimi A, Hannachi N, Mariotti A, Rolland C, Levasseur A, Baron SA, Rolain JM, Camoin-Jau L. The Antibacterial Effect of Platelets on Escherichia coli Strains. Biomedicines 2022; 10:biomedicines10071533. [PMID: 35884840 PMCID: PMC9313237 DOI: 10.3390/biomedicines10071533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023] Open
Abstract
Platelets play an important role in defense against pathogens; however, the interaction between Escherichia coli and platelets has not been well described and detailed. Our goal was to study the interaction between platelets and selected strains of E. coli in order to evaluate the antibacterial effect of platelets and to assess bacterial effects on platelet activation. Washed platelets and supernatants of pre-activated platelets were incubated with five clinical colistin-resistant and five laboratory colistin-sensitive strains of E. coli in order to study bacterial growth. Platelet activation was measured with flow cytometry by evaluating CD62P expression. To identify the difference in strain behavior toward platelets, a pangenome analysis using Roary and O-antigen serotyping was carried out. Both whole platelets and the supernatant of activated platelets inhibited growth of three laboratory colistin-sensitive strains. In contrast, platelets promoted growth of the other strains. There was a negative correlation between platelet activation and bacterial growth. The Roary results showed no logical clustering to explain the mechanism of platelet resistance. The diversity of the responses might be due to strains of different types of O-antigen. Our results show a bidirectional interaction between platelets and E. coli whose expression is dependent on the bacterial strain involved.
Collapse
Affiliation(s)
- Amina Ezzeroug Ezzraimi
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Nadji Hannachi
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- Département de Pharmacie, Faculté de Médecine, Université Ferhat Abbas Sétif I, Sétif 19000, Algeria
| | - Antoine Mariotti
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
| | - Clara Rolland
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Aix Marseille University, IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, 13385 Marseille, France
| | - Anthony Levasseur
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Aix Marseille University, IRD, SSA, APHM, VITROME, IHU Méditerranée Infection, 13385 Marseille, France
| | - Sophie Alexandra Baron
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Jean-Marc Rolain
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
| | - Laurence Camoin-Jau
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, 13385 Marseille, France; (A.E.E.); (N.H.); (A.M.); (S.A.B.); (J.-M.R.)
- IHU Méditerranée Infection, Boulevard Jean Moulin, 13385 Marseille, France; (C.R.); (A.L.)
- Laboratoire d’Hématologie, Hôpital de la Timone, APHM, Boulevard Jean-Moulin, 13385 Marseille, France
- Correspondence: ; Tel.: +33-4-13-73-24-01; Fax: +33-4-13-73-24-02
| |
Collapse
|
7
|
Rivière T, Bader A, Pogoda K, Walzog B, Maier-Begandt D. Structure and Emerging Functions of LRCH Proteins in Leukocyte Biology. Front Cell Dev Biol 2020; 8:584134. [PMID: 33072765 PMCID: PMC7536344 DOI: 10.3389/fcell.2020.584134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/01/2020] [Indexed: 01/10/2023] Open
Abstract
Actin-dependent leukocyte trafficking and activation are critical for immune surveillance under steady state conditions and during disease states. Proper immune surveillance is of utmost importance in mammalian homeostasis and it ensures the defense against pathogen intruders, but it also guarantees tissue integrity through the continuous removal of dying cells or the elimination of tumor cells. On the cellular level, these processes depend on the precise reorganization of the actin cytoskeleton orchestrating, e.g., cell polarization, migration, and vesicular dynamics in leukocytes. The fine-tuning of the actin cytoskeleton is achieved by a multiplicity of actin-binding proteins inducing, e.g., the organization of the actin cytoskeleton or linking the cytoskeleton to membranes and their receptors. More than a decade ago, the family of leucine-rich repeat (LRR) and calponin homology (CH) domain-containing (LRCH) proteins has been identified as cytoskeletal regulators. The LRR domains are important for protein-protein interactions and the CH domains mediate actin binding. LRR and CH domains are frequently found in many proteins, but strikingly the simultaneous expression of both domains in one protein only occurs in the LRCH protein family. To date, one LRCH protein has been described in drosophila and four LRCH proteins have been identified in the murine and the human system. The function of LRCH proteins is still under investigation. Recently, LRCH proteins have emerged as novel players in leukocyte function. In this review, we summarize our current understanding of LRCH proteins with a special emphasis on their function in leukocyte biology.
Collapse
Affiliation(s)
- Thibaud Rivière
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Almke Bader
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kristin Pogoda
- Department of Physiology, Medical Faculty, Augsburg University, Augsburg, Germany
| | - Barbara Walzog
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Maier-Begandt
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Walter Brendel Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Bhatti S, Satyanarayana GNV, Patel DK, Satish A. Bioaccumulation, biotransformation and toxic effect of fipronil in Escherichia coli. CHEMOSPHERE 2019; 231:207-215. [PMID: 31129401 DOI: 10.1016/j.chemosphere.2019.05.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Fipronil is a highly effective, broad-spectrum insecticide used to control pests, globally. The increased usage has led to contamination of soil, water, fruits, and vegetables. The wide and frequent usage of fipronil across the globe calls for attention regarding risk assessment of undesirable effects on non-target microorganisms. In this context, the present study was carried to understand the impact of fipronil on non-pathogenic Escherichia coli. The non-pathogenic E. coli are important commensal of the intestinal tract of humans and animals and are also indicator organisms in the environment. Our study indicates that exposure of E. coli to fipronil (100 μM concentration) leads to significant reactive oxygen species production, loss of membrane potential and viability. Further, we have witnessed the bioaccumulation and biotransformation of fipronil by E. coli at non-lethal concentrations. The bio-transformed products (fipronil sulfone and fipronil sulfide) are also the major metabolites (along with amide) reported in the feces of the mammals when exposed to fipronil. Thus, there is a possibility that the gut E. coli might play a role in the degradation and thereby removal of fipronil. In addition, the bioaccumulation of fipronil in bacteria is of concern and need to be further explored because it can lead to biomagnification in the higher trophic level and can disturb the ecological balance. In our knowledge, this is the first report on the determination of fipronil and its metabolites in bacteria through GC-MS/MS.
Collapse
Affiliation(s)
- Saurabh Bhatti
- Ecotoxicology Laboratory, Environment Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - G N V Satyanarayana
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Lucknow, Uttar Pradesh, India
| | - Devendra Kumar Patel
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-IITR, Lucknow, Uttar Pradesh, India
| | - Aruna Satish
- Ecotoxicology Laboratory, Environment Toxicology Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India.
| |
Collapse
|
9
|
Kerrigan SW, Devine T, Fitzpatrick G, Thachil J, Cox D. Early Host Interactions That Drive the Dysregulated Response in Sepsis. Front Immunol 2019; 10:1748. [PMID: 31447831 PMCID: PMC6691039 DOI: 10.3389/fimmu.2019.01748] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/10/2019] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. While many individual cells and systems in the body are involved in driving the excessive and sometimes sustained host response, pathogen engagement with endothelial cells and platelets early in sepsis progression, are believed to be key. Significant progress has been made in establishing key molecular interactions between platelets and pathogens and endothelial cells and pathogens. This review will explore the growing number of compensatory connections between bacteria and viruses with platelets and endothelial cells and how a better understanding of these interactions are informing the field of potential novel ways to treat the dysregulated host response during sepsis.
Collapse
Affiliation(s)
- Steven W Kerrigan
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tatyana Devine
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Glenn Fitzpatrick
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jecko Thachil
- Department of Haematology, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dermot Cox
- Cardiovascular Infection Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|