1
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Yang CS, Coopersmith CM, Lyons JD. Cell death proteins in sepsis: key players and modern therapeutic approaches. Front Immunol 2024; 14:1347401. [PMID: 38274794 PMCID: PMC10808706 DOI: 10.3389/fimmu.2023.1347401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
Cell death proteins play a central role in host immune signaling during sepsis. These interconnected mechanisms trigger cell demise via apoptosis, necroptosis, and pyroptosis while also driving inflammatory signaling. Targeting cell death mediators with novel therapies may correct the dysregulated inflammation seen during sepsis and improve outcomes for septic patients.
Collapse
Affiliation(s)
- Chloe S. Yang
- Department of Surgery, Emory University, Atlanta, GA, United States
| | - Craig M. Coopersmith
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Critical Care Center, Emory University, Atlanta, GA, United States
| | - John D. Lyons
- Department of Surgery, Emory University, Atlanta, GA, United States
- Emory Critical Care Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Cross-Protection against Acute Staphylococcus aureus Lung Infection in Mice by a D-Glutamate Auxotrophic Vaccine Candidate. Vaccines (Basel) 2023; 11:vaccines11020210. [PMID: 36851088 PMCID: PMC9963018 DOI: 10.3390/vaccines11020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Staphylococcus aureus is regarded as a threatening bacterial pathogen causing invasive pneumonia in healthcare settings and in the community. The continuous emergence of multidrug resistant strains is narrowing the treatment options for these infections. The development of an effective S. aureus vaccine is, therefore, a global priority. We have previously developed a vaccine candidate, 132 ΔmurI Δdat, which is auxotrophic for D-glutamate, and protects against sepsis caused by S. aureus. In the present study, we explored the potential of this vaccine candidate to prevent staphylococcal pneumonia, by using an acute lung infection model in BALB/c mice. Intranasal inoculation of the vaccine strain yielded transitory colonization of the lung tissue, stimulated production of relevant serum IgG and secretory IgA antibodies in the lung and distal vaginal mucosa and conferred cross-protection to acute pneumonia caused by clinically important S. aureus strains. Although these findings are promising, additional research is needed to minimize dose-dependent toxicity for safer intranasal immunization with this vaccine candidate.
Collapse
|
5
|
Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA, Sivanesam K, Schaedel JF, Patil TK, Wang J, Hernandez A, Patil NK, Sherwood ER, Bohannon JK. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol 2022; 13:1044662. [PMID: 36439136 PMCID: PMC9692127 DOI: 10.3389/fimmu.2022.1044662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2023] Open
Abstract
Immunocompromised populations are highly vulnerable to developing life-threatening infections. Strategies to protect patients with weak immune responses are urgently needed. Employing trained immunity, whereby innate leukocytes undergo reprogramming upon exposure to a microbial product and respond more robustly to subsequent infection, is a promising approach. Previously, we demonstrated that the TLR4 agonist monophosphoryl lipid A (MPLA) induces trained immunity and confers broad resistance to infection. TLR4 signals through both MyD88- and TRIF-dependent cascades, but the relative contribution of each pathway to induction of trained immunity is unknown. Here, we show that MPLA-induced resistance to Staphylococcus aureus infection is lost in MyD88-KO, but not TRIF-KO, mice. The MyD88-activating agonist CpG (TLR9 agonist), but not TRIF-activating Poly I:C (TLR3 agonist), protects against infection in a macrophage-dependent manner. MPLA- and CpG-induced augmentation of macrophage metabolism and antimicrobial functions is blunted in MyD88-, but not TRIF-KO, macrophages. Augmentation of antimicrobial functions occurs in parallel to metabolic reprogramming and is dependent, in part, on mTOR activation. Splenic macrophages from CpG-treated mice confirmed that TLR/MyD88-induced reprogramming occurs in vivo. TLR/MyD88-triggered metabolic and functional reprogramming was reproduced in human monocyte-derived macrophages. These data show that MyD88-dependent signaling is critical in TLR-mediated trained immunity.
Collapse
Affiliation(s)
- Allison M. Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Katherine R. Burelbach
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Margaret A. McBride
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Cody L. Stothers
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Olivia A. Boykin
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Kalkena Sivanesam
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Washington State University Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica F. Schaedel
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tazeen K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jingbin Wang
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naeem K. Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Edward R. Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| | - Julia K. Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University, Medical Center, Nashville, TN, United States
| |
Collapse
|
6
|
Fan JY, Huang Y, Li Y, Muluh TA, Fu SZ, Wu JB. Bacteria in cancer therapy: A new generation of weapons. Cancer Med 2022; 11:4457-4468. [PMID: 35522104 PMCID: PMC9741989 DOI: 10.1002/cam4.4799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Tumors are presently a major threat to human life and health. Malignant tumors are conventionally treated through radiotherapy and chemotherapy. However, traditional therapies yield unsatisfactory results due to high toxicity to the normal cells, inability to treat deep tumor tissues, and the possibility of inducing drug resistance in the tumor cells. This has caused immunotherapy to emerge as an effective and alternate treatment strategy. To overcome the limitations of the conventional treatments as well as to avert the risk of various drug resistance and cytotoxicity, bacterial anti-tumor immunotherapy has raised the interest of researchers. This therapeutic strategy employs bacteria to specifically target and colonize the tumor tissues with preferential accumulation and proliferation. Such bacterial accumulation initiates a series of anti-tumor immune responses, effectively eliminating the tumor cells. This immunotherapy can use the bacteria alone or concomitantly with the other methods. For example, the bacteria can deliver the anti-cancer effect mediators by regulating the expression of the bacterial genes or by synthesizing the bioengineered bacterial complexes. This review will discuss the mechanism of utilizing bacteria in treating tumors, especially in terms of immune mechanisms. This could help in better integrating the bacterial method with other treatment options, thereby, providing a more effective, reliable, and unique treatment therapy for tumors.
Collapse
Affiliation(s)
- Jun Ying Fan
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Yuan Huang
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Yi Li
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Tobias Achu Muluh
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Shao Zhi Fu
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Department of Nuclear MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China
| | - Jing Bo Wu
- Department of OncologyThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Department of Nuclear MedicineThe Affiliated Hospital of Southwest Medical UniversityLuzhouSichuanP.R. China,Academician (Expert) Workstation of Sichuan ProvinceLuzhouSichuanP.R. China
| |
Collapse
|
7
|
Owen AM, Fults JB, Patil NK, Hernandez A, Bohannon JK. TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Front Immunol 2021; 11:622614. [PMID: 33679711 PMCID: PMC7930332 DOI: 10.3389/fimmu.2020.622614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Collapse
Affiliation(s)
- Allison M Owen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jessica B Fults
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Naeem K Patil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
8
|
Platelet CXCL4 mediates neutrophil extracellular traps formation in ANCA-associated vasculitis. Sci Rep 2021; 11:222. [PMID: 33420306 PMCID: PMC7794527 DOI: 10.1038/s41598-020-80685-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophils form neutrophil extracellular traps (NETs), which are involved in the pathogenesis of ANCA-associated vasculitis (AAV). Recent reports suggest that platelets stimulated via toll-like receptor (TLR) pathways can induce NETs formation. However, the mechanism underlying the involvement of platelets in NETs formation in AAV is unknown. We investigated the role of platelets in the pathogenesis of AAV. Platelets from AAV patients and healthy controls (HCs) were co-cultured with peripheral neutrophils, and NETs formation was visualized and quantified. The expression levels of TLRs on platelets were examined by flow cytometry. Platelets were treated with a TLR agonist, platelet-derived humoral factor, CXCL4 (platelet factor 4: PF4), and/or anti-CXCL4 antibody to investigate the effects of TLR–CXCL4 signaling on NETs formation. Platelets from AAV significantly upregulated NETs formation in vitro. Flow cytometric analysis revealed that the proportion of TLR9 positive platelets was significantly higher in AAV than HCs. CXCL4 released from TLR9 agonist-stimulated platelets was significantly enhanced in AAV, which subsequently increased NETs formation. Further, neutralizing anti-CXCL4 antibody significantly inhibited NETs formation enhanced by platelets from AAV. TLR9 signaling and CXCL4 release underlie the key role that platelets play in NETs formation in the pathogenesis of AAV.
Collapse
|
9
|
Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Indexed: 05/06/2023]
Abstract
The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Suzanne M Castenmiller
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| |
Collapse
|
10
|
The Central Role and Possible Mechanisms of Bacterial DNAs in Sepsis Development. Mediators Inflamm 2020; 2020:7418342. [PMID: 32934605 PMCID: PMC7479481 DOI: 10.1155/2020/7418342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
The pathological roles of bacterial DNA have been documented many decades ago. Bacterial DNAs are different from mammalian DNAs; the latter are heavily methylated. Mammalian cells have sensors such as TLR-9 to sense the DNAs with nonmethylated CpGs and distinguish them from host DNAs with methylated CpGs. Further investigation has identified many other types of DNA sensors distributed in a variety of cellular compartments. These sensors not only sense foreign DNAs, including bacterial and viral DNAs, but also sense damaged DNAs from the host cells. The major downstream signalling pathways includeTLR-9-MyD88-IKKa-IRF-7/NF-κB pathways to increase IFN/proinflammatory cytokine production, STING-TBK1-IRF3 pathway to increase IFN-beta, and AIM2-ASC-caspas-1 pathway to release IL-1beta. The major outcome is to activate host immune response by inducing cytokine production. In this review, we focus on the roles and potential mechanisms of DNA sensors and downstream pathways in sepsis. Although bacterial DNAs play important roles in sepsis development, bacterial DNAs alone are unable to cause severe disease nor lead to death. Priming animals with bacterial DNAs facilitate other pathological factors, such as LPS and other virulent factors, to induce severe disease and lethality. We also discuss compartmental distribution of DNA sensors and pathological significance as well as the transport of extracellular DNAs into cells. Understanding the roles of DNA sensors and signal pathways will pave the way for novel therapeutic strategies in many diseases, particularly in sepsis.
Collapse
|
11
|
Kim TH, Kim D, Lee H, Kwak MH, Park S, Lee Y, Kwon HJ. CpG-DNA induces bacteria-reactive IgM enhancing phagocytic activity against Staphylococcus aureus infection. BMB Rep 2020. [PMID: 30940324 PMCID: PMC6889893 DOI: 10.5483/bmbrep.2019.52.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CpG-DNA triggers the proliferation and differentiation of B cells which results in the increased production of antibodies. The presence of bacteria-reactive IgM in normal serum was reported; however, the relevance of CpG-DNA with the production of bacteria-reactive IgM has not been investigated. Here, we proved the function of CpG-DNA for the production of bacteria-reactive IgM. CpG-DNA administration led to increased production of bacteria-reactive IgM both in the peritoneal fluid and serum through TLR9 signaling pathway. When we stimulated B cells with CpG-DNA, production of bacteria-reactive IgM was reproduced in vitro. We established a bacteria-reactive monoclonal IgM antibody using CpG-DNA stimulated-peritoneal B cells. The monoclonal IgM antibody enhanced the phagocytic activity of RAW 264.7 cells against S. aureus MW2 infection. Therefore, we suggest that CpG-DNA enhances the antibacterial activity of the immune system by triggering the production of bacteria-reactive IgM. We also suggest the possible application of the antibodies for the treatment of antibiotics-resistant bacterial infections.
Collapse
Affiliation(s)
- Te Ha Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Heesu Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Min Hyung Kwak
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252; Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
12
|
Kim TH, Park J, Kim D, Gautam A, Akauliya M, Kim J, Lee H, Park S, Lee Y, Kwon HJ. Anti-Bacterial Effect of CpG-DNA Involves Enhancement of the Complement Systems. Int J Mol Sci 2019; 20:ijms20143397. [PMID: 31295956 PMCID: PMC6678731 DOI: 10.3390/ijms20143397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
CpG-DNA activates the host immune system to resist bacterial infections. In this study, we examined the protective effect of CpG-DNA in mice against Escherichia coli (E. coli) K1 infection. Administration of CpG-DNA increased the survival of mice after E. coli K1 infection, which reduces the numbers of bacteria in the organs. Pre-injection of mice with CpG-DNA before E. coli K1 infection increased the levels of the complement C3 but not C3a and C3b. The survival of the mice after E. coli K1 infection was significantly decreased when the mice were pre-injected with the cobra venom factor (CVF) removing the complement compared to the non-CVF-treated mice group. It suggests that the complement has protective roles against E. coli K1 infection. In addition, the survival of complement-depleted mice was increased by CpG-DNA pre-administration before E. coli K1 infection. Therefore, we suggest that CpG-DNA enhances the anti-bacterial activity of the immune system by augmenting the levels of complement systems after E. coli K1 infection and triggering other factors as well. Further studies are required to investigate the functional roles of the CpG-DNA-induced complement regulation and other factors against urgent bacterial infection.
Collapse
Affiliation(s)
- Te Ha Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Joongwon Park
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Avishekh Gautam
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hanseul Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Korea.
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Korea.
| |
Collapse
|