1
|
Pal R, Mukherjee S, Khan A, Nathani M, Maji S, Tandey R, Das S, Patra A, Mandal V. A critical appraisal on the involvement of plant-based extracts as neuroprotective agents (2012-2022): an effort to ease out decision-making process for researchers. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03266-6. [PMID: 38985312 DOI: 10.1007/s00210-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
The purpose of this review study is to provide a condensed compilation of 164 medicinal plants that have been investigated for their neuroprotective aspects by researchers between the years 2012 and 2022 which also includes a recent update of 2023-2024. After using certain keywords to retrieve the data from SCOPUS, it was manually sorted to eliminate any instances of duplication. The article is streamlined into three major segments. The first segment takes a dig into the current global trend and attempts to decrypt vital information related to plant names, families, plant parts used, and neurological disorders investigated. The second segment of the article makes an attempt to present a comprehensive insight into the various mechanistic pathways through which phytochemicals can intervene to exert neuroprotection. The final segment of the manuscript is a bibliometric appraisal of all researches conducted. The study is based on 256 handpicked articles based on decided inclusion criteria. Illustrative compilation of various pathways citing their activation and deactivation channels are also presented with possible hitting points of various phytochemicals. The present study employed Microsoft Excel 2019 and VOS viewer as data visualisation tools.
Collapse
Affiliation(s)
- Riya Pal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Altamash Khan
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Mansi Nathani
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Sayani Maji
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Roshni Tandey
- Department of B. Pharm Ayurveda, Delhi Pharmaceutical Sciences and Research University, Sector-3, MB Road, Pushp Vihar, New Delhi, 110017, India
| | - Sinchan Das
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Arjun Patra
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, C.G, 495009, India.
| |
Collapse
|
2
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
3
|
Rubinstein L, Kiffer F, Puukila S, Lowe MG, Goo B, Luthens A, Schreurs AS, Torres SM, Steczina S, Tahimic CGT, Allen AR. Mitochondria-Targeted Human Catalase in the Mouse Longevity MCAT Model Mitigates Head-Tilt Bedrest-Induced Neuro-Inflammation in the Hippocampus. Life (Basel) 2022; 12:1838. [PMID: 36362993 PMCID: PMC9695374 DOI: 10.3390/life12111838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 10/22/2024] Open
Abstract
Microgravity (modeled by head-tilt bedrest and hind-limb unloading), experienced during prolonged spaceflight, results in neurological consequences, central nervous system (CNS) dysfunction, and potentially impairment during the performance of critical tasks. Similar pathologies are observed in bedrest, sedentary lifestyle, and muscle disuse on Earth. In our previous study, we saw that head-tilt bedrest together with social isolation upregulated the milieu of pro-inflammatory cytokines in the hippocampus and plasma. These changes were mitigated in a MCAT mouse model overexpressing human catalase in the mitochondria, pointing out the importance of ROS signaling in this stress response. Here, we used a head-tilt model in socially housed mice to tease out the effects of head-tilt bedrest without isolation. In order to find the underlying molecular mechanisms that provoked the cytokine response, we measured CD68, an indicator of microglial activation in the hippocampus, as well as changes in normal in-cage behavior. We hypothesized that hindlimb unloading (HU) will elicit microglial hippocampal activations, which will be mitigated in the MCAT ROS-quenching mice model. Indeed, we saw an elevation of the activated microglia CD68 marker following HU in the hippocampus, and this pathology was mitigated in MCAT mice. Additionally, we identified cytokines in the hippocampus, which had significant positive correlations with CD68 and negative correlations with exploratory behaviors, indicating a link between neuroinflammation and behavioral consequences. Unveiling a correlation between molecular and behavioral changes could reveal a biomarker indicative of these responses and could also result in a potential target for the treatment and prevention of cognitive changes following long space missions and/or muscle disuse on Earth.
Collapse
Affiliation(s)
- Linda Rubinstein
- Universities Space Research Association USRA, Columbia, MD 21046, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
- The Joseph Sagol Neuroscience Center, Sheba Research Hospital, Ramat Gan 52621, Israel
| | - Frederico Kiffer
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie Puukila
- Universities Space Research Association USRA, Columbia, MD 21046, USA
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
| | - Moniece G Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Brie Goo
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
| | | | - Ann-Sofie Schreurs
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
| | - Samantha M Torres
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Sonette Steczina
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA 94035, USA
- KBR, Houston, TX 77002, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Antiño R Allen
- Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Radiation Health Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Murray TE, Richards CM, Robert-Gostlin VN, Bernath AK, Lindhout IA, Klegeris A. Potential neurotoxic activity of diverse molecules released by astrocytes. Brain Res Bull 2022; 189:80-101. [PMID: 35988785 DOI: 10.1016/j.brainresbull.2022.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/04/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators. Some of these molecules are neuroprotective and inflammation resolving while others, including reactive oxygen species (ROS), nitric oxide (NO), matrix metalloproteinase (MMP)- 9, L-glutamate, and tumor necrosis factor α (TNF), are well-established toxins known to cause damage to surrounding cells and tissues. We hypothesized that similar to microglia, the brain immune cells, reactive astrocytes can release a broader set of diverse molecules that are potentially neurotoxic. A literature search was conducted to identify such molecules using the following two criteria: 1) evidence of their expression and secretion by astrocytes and 2) direct neurotoxic action. This review describes 14 structurally diverse molecules as less-established astrocyte neurotoxins, including C-X-C motif chemokine ligand (CXCL)10, CXCL12/CXCL12(5-67), FS-7-associated surface antigen ligand (FasL), macrophage inflammatory protein (MIP)- 2α, TNF-related apoptosis inducing ligand (TRAIL), pro-nerve growth factor (proNGF), pro-brain-derived neurotrophic factor (proBDNF), chondroitin sulfate proteoglycans (CSPGs), cathepsin (Cat)B, group IIA secretory phospholipase A2 (sPLA2-IIA), amyloid beta peptides (Aβ), high mobility group box (HMGB)1, ceramides, and lipocalin (LCN)2. For some of these molecules, further studies are required to establish either their direct neurotoxic effects or the full spectrum of stimuli that induce their release by astrocytes. Only limited studies with human-derived astrocytes and neurons are available for most of these potential neurotoxins, which is a knowledge gap that should be addressed in the future. We also summarize available evidence of the role these molecules play in select neuropathologies where reactive astrocytes are a key feature. A comprehensive understanding of the full spectrum of neurotoxins released by reactive astrocytes is key to understanding neuroinflammatory diseases characterized by the adverse activation of these cells and may guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Taryn E Murray
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Victoria N Robert-Gostlin
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ivan A Lindhout
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
5
|
Rivas F, Poblete-Aro C, Pando ME, Allel MJ, Fernandez V, Soto A, Nova P, Garcia-Diaz D. Effects of polyphenols in aging and neurodegeneration associated with oxidative stress. Curr Med Chem 2021; 29:1045-1060. [PMID: 34720075 DOI: 10.2174/0929867328666211101100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/22/2022]
Abstract
Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.
Collapse
Affiliation(s)
- Francisca Rivas
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Carlos Poblete-Aro
- Centro de Investigacion de Rehabilitacion en Salud, Universidad de las Americas, Santiago. Chile
| | - María Elsa Pando
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - María José Allel
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | - Valentina Fernandez
- Escuela de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| | | | - Pablo Nova
- Unidad de Anatomia Humana Normal, Escuela de Medicina, Facultad de Ciencias Medicas, Universidad de Santiago de Chile, Santiago. Chile
| | - Diego Garcia-Diaz
- Departamento de Nutricion, Facultad de Medicina, Universidad de Chile, Santiago. Chile
| |
Collapse
|
6
|
Abstract
The palm oil industry has contributed enormously to the economic growth of developing countries in the tropics, including Malaysia. Despite the industry being a development tool for emerging economies, the oil palm crop is inundated with allegations of its unsustainable plantation practices and viewed as environmentally detrimental and socially adverse. These negative perceptions are amplified through anti-palm oil campaigns and protectionist trade regulations in developed countries, particularly in the European Union (EU). This situation, if further exacerbated, could potentially affect the export of palm oil and the industry as a whole. As such, this article provides a critical review of the key sustainability issues faced by the Malaysian palm oil industry as the second biggest exporter of palm oil to the global market. The various insights and the interpretations of sustainability are contested according to the contexts and the interests of the countries involved. Hence, palm oil is constantly exposed to bias masked by non-tariff barriers from consumer countries to protect their domestically produced vegetable oils. This could constrain the commodity competitiveness in the international market. As issues on palm oil sustainability continue to evolve, policymakers at key stakeholder agencies need to devise strategies to manage global disruption in the palm oil trade.
Collapse
|
7
|
Leow SS, Fairus S, Sambanthamurthi R. Water-soluble palm fruit extract: composition, biological properties, and molecular mechanisms for health and non-health applications. Crit Rev Food Sci Nutr 2021; 62:9076-9092. [PMID: 34156318 DOI: 10.1080/10408398.2021.1939648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The oil palm (Elaeis guineensis) fruit is a source of vegetable oil and various phytonutrients. Phytochemical compounds present in palm oil include tocotrienols, carotenoids, phytosterols, squalene, coenzyme Q10, and phospholipids. Being a fruit, the oil palm is also a rich source of water-soluble phytonutrients, including phenolic compounds. Extraction of phytonutrients from the oil palm vegetation liquor of palm oil milling results in a phenolic acid-rich fraction termed Water-Soluble Palm Fruit Extract (WSPFE). Pre-clinical in vitro, ex vivo, and in vivo studies carried out using various biological models have shown that WSPFE has beneficial bioactive properties, while clinical studies in healthy volunteers showed that it is safe for human consumption and confers antioxidant and anti-inflammatory effects. The composition, biological properties, and relevant molecular mechanisms of WSPFE discovered thus far are discussed in the present review, with a view to offer future research perspectives on WSPFE for health and non-health applications.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | | |
Collapse
|
8
|
Horváth G, Horváth A, Reichert G, Böszörményi A, Sipos K, Pandur E. Three chemotypes of thyme (Thymus vulgaris L.) essential oil and their main compounds affect differently the IL-6 and TNFα cytokine secretions of BV-2 microglia by modulating the NF-κB and C/EBPβ signalling pathways. BMC Complement Med Ther 2021; 21:148. [PMID: 34022882 PMCID: PMC8140451 DOI: 10.1186/s12906-021-03319-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The essential oils possess both antimicrobial and anti-inflammatory effects, therefore they can provide an effective treatment against infections. Essential oils are widely used as supportive ingredients in many diseases, especially in the acute and chronic diseases of the respiratory tract. Neuroinflammation is responsible for several diseases of the central nervous system. Some plant-derived bioactive molecules have been shown to have role in attenuating neuroinflammation by regulating microglia, the immune cells of the CNS. METHODS In this study, the anti-inflammatory effect of three chemotypes of thyme essential oil and their main compounds (geraniol, thujanol and linalool) were examined on lipopolysaccharide-induced BV-2 microglia. Three different experimental setups were used, LPS pretreatment, essential oil pretreatment and co-treatments of LPS and essential oils in order to determine whether essential oils are able to prevent inflammation and can decrease it. The concentrations of the secreted tumour necrosis factor α (TNFα) and interleukin-6 (IL-6) proinflammatory cytokines were measured and we analysed by Western blot the activity of the cell signalling pathways, NF-κB and CCAAT-enhancer binding protein β (C/EBPβ) regulating TNFα and IL-6 proinflammatory cytokine expressions in BV-2 cells. RESULTS Our results showed definite alterations in the effects of essential oil chemotypes and their main compounds at the different experimental setups. Considering the changes of IL-6 and TNFα secretions the best reduction of inflammatory cytokines could be reached by the pretreatment with the essential oils. In addition, the main compounds exerted better effects than essential oil chemotypes in case of LPS pretreatment. At the essential oil pretreatment experiment, the effect of linalool and geraniol was outstanding but there was no major difference between the actions of chemotypes and standards. Main compounds could be seen to have large inhibitory effects on certain cell signalling components related to the activation of the expression of proinflammatory cytokines. CONCLUSION Thyme essential oils are good candidates to use in prevention of neuroinflammation and related neurodegeneration, but the exact ratio of the components has to be selected carefully.
Collapse
Affiliation(s)
- Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Gréta Reichert
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2., Pécs, Hungary
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
9
|
Hewlings SJ, Draayer K, Kalman DS. Palm Fruit Bioactive Complex (PFBc), a Source of Polyphenols, Demonstrates Potential Benefits for Inflammaging and Related Cognitive Function. Nutrients 2021; 13:nu13041127. [PMID: 33808068 PMCID: PMC8066389 DOI: 10.3390/nu13041127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cognitive function is a key aspect of healthy aging. Inflammation associated with normal aging, also called inflammaging is a primary risk factor for cognitive decline. A diet high in fruits and vegetable and lower in calories, particularly a Mediterranean Diet, may lower the risk of age-related cognitive decline due in part to the associated high intake of antioxidants and polyphenols. A phenolic, Palm Fruit Bioactive complex (PFBc) derived from the extraction process of palm oil from oil palm fruit (Elaeis guineensis), is reported to offset inflammation due to its high antioxidant, especially vitamin E, and polyphenol content. The benefit is thought to be achieved via the influence of antioxidants on gene expression. It is the purpose of this comprehensive review to discuss the etiology, including gene expression, of mild cognitive impairment (MCI) specific to dietary intake of antioxidants and polyphenols and to focus on the potential impact of nutritional interventions specifically PFBc has on MCI. Several in vitro, in vivo and animal studies support multiple benefits of PFBc especially for improving cognitive function via anti-inflammatory and antioxidant mechanisms. While more human studies are needed, those completed thus far support the benefit of consuming PFBc to enhance cognitive function via its anti-inflammatory antioxidant functions.
Collapse
Affiliation(s)
- Susan J. Hewlings
- The Herbert H & Grace A. Dow College of Health Professions, Nutrition, Central Michigan University, Mt. Pleasant, MI 48859, USA
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Correspondence:
| | - Kristin Draayer
- EDGE Veterinary Vaccines Consulting Group, 315 MAIN STREET 201, Ames, IA 50010, USA;
| | - Douglas S. Kalman
- Nutrasource/GRAS Associates, Scientific Affairs, Guelph, ON N1G0B4, Canada;
- Nutrion Department, College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
10
|
Pan X, Kaminga AC, Wu Wen S, Liu A. Chemokines in post-traumatic stress disorder: A network meta-analysis. Brain Behav Immun 2021; 92:115-126. [PMID: 33242653 DOI: 10.1016/j.bbi.2020.11.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Previous studies on the association between chemokines concentrations and post-traumatic stress disorder (PTSD) yielded inconsistent results. Therefore, the purpose of this network meta-analysis was to summarize these results. METHODS The databases of PubMed, Web of Science, Psyc-ARTICLES, Embase and Cochrane Library were searched for relevant articles published not later than January 15, 2020. Then, eligible studies were selected based on predefined study selection criteria. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) were calculated as group differences in chemokines concentrations. Moreover, network meta-analysis was used to rank chemokines effect values according to their respective surface under cumulative ranking curve (SUCRA) probabilities. FINDINGS A total of 18 eligible studies that investigated the association between 9 different chemokines and PTSD were identified. They involved 1,510 patients and 2,012 controls. Results of the meta-analysis showed that the concentrations of CCL3, CCL4 and CCL5 in the PTSD patients were significantly higher than that in the controls (SMDs of 4.12, 6.11 and 1.53 respectively). However, although not statistically significant, concentrations of CCL2 tended to be lower in PTSD patients than in the controls (SMD = -0.76); whereas concentrations of CXCL12 tended to be higher in PTSD patients than in the controls (SMD = 0.37). SUCRA probabilities showed that, among all the chemokines studied, the effect of CCL5 was the highest in PTSD patients. INTERPRETATION Concentrations of CCL3, CCL4 and CCL5 may be associated with a trauma and/or PTSD. Also, CXCL12 and CCL2 may be the underlying biomarkers for trauma and/or PTSD. Thus, future studies with large population based samples are needed to further assess these associations. In addition, future research should explore possible mechanisms underlying these associations, with the aim to develop new diagnostics for PTSD. PROSPERO CRD42019147703.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China; Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Canada; Department of Obstetrics and Gynaecology and School of Epidemiology and Public Health, University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
11
|
Ibrahim N‘I, Muhammad Ismail Tadj NB, Rahman Sarker MM, Naina Mohamed I. The Potential Mechanisms of the Neuroprotective Actions of Oil Palm Phenolics: Implications for Neurodegenerative Diseases. Molecules 2020; 25:E5159. [PMID: 33167585 PMCID: PMC7664177 DOI: 10.3390/molecules25215159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
Neurodegenerative diseases (ND) can be characterized by degradation and subsequent loss of neurons. ND has been identified as the leading cause of disability-adjusted life years (DALYs) worldwide and is associated with various risk factors such as ageing, certain genetic polymorphisms, inflammation, immune and metabolic conditions that may induce elevated reactive oxygen species (ROS) release and subsequent oxidative stress. Presently, no specific cure or prevention is available for ND patients; the symptoms can be only alleviated via drug treatment or surgery. The existing pharmacological treatments are only available for partial treatment of the symptoms. A natural product known as oil palm phenolics (OPP), which is high in antioxidant, could become a potential supplementary antioxidant for neurodegenerative health. OPP is a water-soluble extract from palm fruit that demonstrated medicinal properties including anti-tumor, anti-diabetic and neuroprotective effects. In this review, OPP was proposed for its neuroprotective effects via several mechanisms including antioxidant and anti-inflammatory properties. Besides, OPP has been found to modulate the genes involved in neurotrophic activity. The evidence and proposed mechanism of OPP on the neuroprotective health may provide a comprehensive natural medicine approach to alleviate the symptoms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nurul ‘Izzah Ibrahim
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.‘I.); (N.B.M.I.T.)
| | - Nur Balqis Muhammad Ismail Tadj
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.‘I.); (N.B.M.I.T.)
| | - Md. Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh;
| | - Isa Naina Mohamed
- Pharmacoepidemiology and Drug Safety Unit, Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (N.I.‘I.); (N.B.M.I.T.)
| |
Collapse
|
12
|
Wrede AH, McNamara MC, Baldwin R, Luo J, Montazami R, Kanthasamy A, Hashemi NN. Characterization of Astrocytic Response after Experiencing Cavitation In Vitro. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:1900014. [PMID: 32642072 PMCID: PMC7330500 DOI: 10.1002/gch2.201900014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2020] [Indexed: 06/11/2023]
Abstract
When a traumatic brain injury (TBI) occurs, low-pressure regions inside the skull can cause vapor contents in the cerebral spinal fluid (CSF) to expand and collapse, a phenomenon known as cavitation. When these microbubbles (MBs) collapse, shock waves are radiated outward and are known to damage surrounding materials in other applications, like the steel foundation of boat propellers, so it is alarming to realize the damage that cavitation inflicts on vulnerable brain tissue. Using cell-laden microfibers, the longitudinal morphological response that mouse astrocytes have to surrounding cavitation in vitro is visually analyzed. Astrocytic damage is evident immediately after cavitation when compared to a control sample, as their processes retract. Forty-eight hours later, the astrocytes appeared to spread across the fibers, as normal. This study also analyzes the gene expression changes that occur post-cavitation via quantitative polymerase chain reaction (qPCR) methods. After cavitation a number of pro-inflammatory genes are upregulated, including TNFα, IL-1β, C1q, Serping1, NOS1, IL-6, and JMJD3. Taken together, these results confirm that surrounding cavitation is detrimental to astrocytic function, and yield opportunities to further the understanding of how protective headgear can minimize or eliminate the occurrence of cavitation.
Collapse
Affiliation(s)
- Alex H. Wrede
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Rodger Baldwin
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Jie Luo
- Department of Biomedical SciencesIowa State UniversityAmesIA50011USA
| | - Reza Montazami
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Nicole N. Hashemi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Department of Biomedical SciencesIowa State UniversityAmesIA50011USA
| |
Collapse
|
13
|
Liu B, Kou J, Li F, Huo D, Xu J, Zhou X, Meng D, Ghulam M, Artyom B, Gao X, Ma N, Han D. Lemon essential oil ameliorates age-associated cognitive dysfunction via modulating hippocampal synaptic density and inhibiting acetylcholinesterase. Aging (Albany NY) 2020; 12:8622-8639. [PMID: 32392535 PMCID: PMC7244039 DOI: 10.18632/aging.103179] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
The lemon essential oil (LEO), extracted from the fruit of lemon, has been used to treat multiple pathological diseases, such as diabetes, inflammation, cardiovascular diseases, depression and hepatobiliary dysfunction. The study was designed to study the effects of LEO on cognitive dysfunction induced by Alzheimer’s disease (AD). We used APP/PS1 double transgene (APP/PS1) AD mice in the experiment; these mice exhibit significant deficits in synaptic density and hippocampal-dependent spatial related memory. The effects of LEO on learning and memory were examined using the Morris Water Maze (MWM) test, Novel object recognition test, and correlative indicators, including a neurotransmitter (acetylcholinesterase, AChE), a nerve growth factor (brain-derived neurotrophic factor, BDNF), a postsynaptic marker (PSD95), and presynaptic markers (synapsin-1, and synaptophysin), in APP/PS1 mice. Histopathology was performed to estimate the effects of LEO on AD mice. A significantly lowered brain AChE depression in APP/PS1 and wild-type C57BL/6L (WT) mice. PSD95/ Synaptophysin, the index of synaptic density, was noticeably improved in histopathologic changes. Hence, it can be summarized that memory-enhancing activity might be associated with a reduction in the AChE levels and is elevated by BDNF, PSD95, and synaptophysin through enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Bonan Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Fuyan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Da Huo
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Jiaran Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xiaoxi Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Dehao Meng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Murtaza Ghulam
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Bobkov Artyom
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.,Basic Medical Institute of Heilongjiang Medical Science Academy, Harbin 150081, China.,Translational Medicine Center of Northern China, Harbin 150081, China.,Heilongjiang Provincial key Laboratory of Genetically Modified Model Animal, Harbin Medical University, Ministry of Education, Harbin 150081, China.,China Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin 150081, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.,Basic Medical Institute of Heilongjiang Medical Science Academy, Harbin 150081, China.,Translational Medicine Center of Northern China, Harbin 150081, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China.,Basic Medical Institute of Heilongjiang Medical Science Academy, Harbin 150081, China.,Translational Medicine Center of Northern China, Harbin 150081, China
| |
Collapse
|
14
|
Weinberg RP, Koledova VV, Subramaniam A, Schneider K, Artamonova A, Sambanthamurthi R, Hayes KC, Sinskey AJ, Rha C. Palm Fruit Bioactives augment expression of Tyrosine Hydroxylase in the Nile Grass Rat basal ganglia and alter the colonic microbiome. Sci Rep 2019; 9:18625. [PMID: 31819070 PMCID: PMC6901528 DOI: 10.1038/s41598-019-54461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/12/2019] [Indexed: 01/07/2023] Open
Abstract
Tyrosine hydroxylase (TH) catalyzes the hydroxylation of L-tyrosine to L-DOPA. This is the rate-limiting step in the biosynthesis of the catecholamines - dopamine (DA), norepinephrine (NE), and epinephrine (EP). Catecholamines (CA) play a key role as neurotransmitters and hormones. Aberrant levels of CA are associated with multiple medical conditions, including Parkinson's disease. Palm Fruit Bioactives (PFB) significantly increased the levels of tyrosine hydroxylase in the brain of the Nile Grass rat (NGR), a novel and potentially significant finding, unique to PFB among known botanical sources. Increases were most pronounced in the basal ganglia, including the caudate-putamen, striatum and substantia nigra. The NGR represents an animal model of diet-induced Type 2 Diabetes Mellitus (T2DM), exhibiting hyperglycemia, hyperinsulinemia, and insulin resistance associated with hyperphagia and accelerated postweaning weight gain induced by a high-carbohydrate diet (hiCHO). The PFB-induced increase of TH in the basal ganglia of the NGR was documented by immuno-histochemical staining (IHC). This increase in TH occurred equally in both diabetes-susceptible and diabetes-resistant NGR fed a hiCHO. PFB also stimulated growth of the colon microbiota evidenced by an increase in cecal weight and altered microbiome. The metabolites of colon microbiota, e.g. short-chain fatty acids, may influence the brain and behavior significantly.
Collapse
Affiliation(s)
- Robert P Weinberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| | - Vera V Koledova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | | | - Kirsten Schneider
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Anastasia Artamonova
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Ravigadevi Sambanthamurthi
- Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - ChoKyun Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
15
|
Wenzel TJ, Bajwa E, Klegeris A. Cytochrome c can be released into extracellular space and modulate functions of human astrocytes in a toll-like receptor 4-dependent manner. Biochim Biophys Acta Gen Subj 2019; 1863:129400. [PMID: 31344401 DOI: 10.1016/j.bbagen.2019.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/23/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic activation of glial cells contributes to neurodegenerative diseases. Cytochrome c (CytC) is a soluble mitochondrial protein that can act as a damage-associated molecular pattern (DAMP) when released into the extracellular space from damaged cells. CytC causes immune activation of microglia in a toll-like receptor (TLR) 4-dependent manner. The effects of extracellular CytC on astrocytes are unknown. Astrocytes, which are the most abundant glial cell type in the brain, express TLR 4 and secrete inflammatory mediators; therefore, we hypothesized that extracellular CytC can interact with the TLR 4 of astrocytes inducing their release of inflammatory molecules and cytotoxins. METHOD Experiments were conducted using primary human astrocytes, U118 MG human astrocytic cells, BV-2 murine microglia, and SH-SY5Y human neuronal cells. RESULTS Extracellularly applied CytC increased the secretion of interleukin (IL)-1β, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-12 p70 by cultured primary human astrocytes. Anti-TLR 4 antibodies blocked the CytC-induced secretion of IL-1β and GM-CSF by astrocytes. Supernatants from CytC-activated astrocytes were toxic to human SH-SY5Y neuronal cells. We also demonstrated CytC release from damaged glial cells by measuring CytC in the supernatants of BV-2 microglia after their exposure to cytotoxic concentrations of staurosporine, amyloid-β peptides (Aβ42) and tumor necrosis factor-α. CONCLUSION CytC can be released into the extracellular space from damaged glial cells causing immune activation of astrocytes in a TLR 4-dependent manner. GENERAL SIGNIFICANCE Astrocyte activation by CytC may contribute to neuroinflammation and neuronal death in neurodegenerative diseases. Astrocyte TLR 4 could be a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Tyler J Wenzel
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Ekta Bajwa
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|