1
|
Chitadze L, Meparishvili M, Lagani V, Khuchua Z, McCabe BJ, Solomonia R. Src-NADH dehydrogenase subunit 2 complex and recognition memory of imprinting in domestic chicks. PLoS One 2024; 19:e0297166. [PMID: 38285689 PMCID: PMC10824410 DOI: 10.1371/journal.pone.0297166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/30/2023] [Indexed: 01/31/2024] Open
Abstract
Src is a non-receptor tyrosine kinase participating in a range of neuronal processes, including synaptic plasticity. We have recently shown that the amounts of total Src and its two phosphorylated forms, at tyrosine-416 (activated) and tyrosine-527 (inhibited), undergoes time-dependent, region-specific learning-related changes in the domestic chick forebrain after visual imprinting. These changes occur in the intermediate medial mesopallium (IMM), a site of memory formation for visual imprinting, but not the posterior pole of the nidopallium (PPN), a control brain region not involved in imprinting. Src interacts with mitochondrial genome-coded NADH dehydrogenase subunit 2 (NADH2), a component of mitochondrial respiratory complex I. This interaction occurs at brain excitatory synapses bearing NMDA glutamate receptors. The involvement of Src-NADH2 complexes in learning and memory is not yet explored. We show for the first time that, independently of changes in total Src or total NADH2, NADH2 bound to Src immunoprecipitated from the P2 plasma membrane-mitochondrial fraction: (i) is increased in a learning-related manner in the left IMM 1 h after the end of training; (ii), is decreased in the right IMM in a learning-related way 24 h after training. These changes occurred in the IMM but not the PPN. They are attributable to learning occurring during training rather than a predisposition to learn. Learning-related changes in Src-bound NADH2 are thus time- and region-dependent.
Collapse
Affiliation(s)
- Lela Chitadze
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Maia Meparishvili
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Vincenzo Lagani
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Zaza Khuchua
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Brian J. McCabe
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Revaz Solomonia
- Institute of Chemical Biology, School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
- Iv. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
2
|
Frith MC, Ni S. DNA Conserved in Diverse Animals Since the Precambrian Controls Genes for Embryonic Development. Mol Biol Evol 2023; 40:msad275. [PMID: 38085182 PMCID: PMC10735318 DOI: 10.1093/molbev/msad275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
DNA that controls gene expression (e.g. enhancers, promoters) has seemed almost never to be conserved between distantly related animals, like vertebrates and arthropods. This is mysterious, because development of such animals is partly organized by homologous genes with similar complex expression patterns, termed "deep homology." Here, we report 25 regulatory DNA segments conserved across bilaterian animals, of which 7 are also conserved in cnidaria (coral and sea anemone). They control developmental genes (e.g. Nr2f, Ptch, Rfx1/3, Sall, Smad6, Sp5, Tbx2/3), including six homeobox genes: Gsx, Hmx, Meis, Msx, Six1/2, and Zfhx3/4. The segments contain perfectly or near-perfectly conserved CCAAT boxes, E-boxes, and other sequences recognized by regulatory proteins. More such DNA conservation will surely be found soon, as more genomes are published and sequence comparison is optimized. This reveals a control system for animal development conserved since the Precambrian.
Collapse
Affiliation(s)
- Martin C Frith
- Artificial Intelligence Research Center, AIST, Tokyo, Japan
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
- Computational Bio Big Data Open Innovation Laboratory, AIST, Tokyo, Japan
| | - Shengliang Ni
- Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| |
Collapse
|
3
|
Filial imprinting in domestic chicks; cytoplasmic polyadenylation element binding protein 3, predispositions and learning. Neuroreport 2023; 34:144-149. [PMID: 36719842 DOI: 10.1097/wnr.0000000000001872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Visual imprinting is a learning process, whereby young animals come to prefer a visual stimulus after exposure to it (training). Available evidence indicates that the intermediate medial mesopallium (IMM) in the domestic chick forebrain is a site of memory formation during visual imprinting. We have found previously that cytoplasmic polyadenylation element binding protein 3 in the P2 plasma membrane-mitochondrial fraction (CPEB3-P2) is upregulated in a learning-dependent way in the left IMM 24 h after training. CPEB3 has two forms, soluble and aggregated. Soluble CPEB3 represses translation; the aggregated form (CPEB3-AF) is amyloid-like and can promote translation. Our previous study did not show which of these two forms is increased after imprinting. We have now resolved this matter by measuring, 24 h after training, CPEB3-P2 and CPEB3-AF in the IMM and a control brain region, the posterior pole of nidopallium (PPN). The methods include imprinting training with a visual stimulus, behavioral measurement of preference, preparation of aggregated CPEB3, western immunoblotting, quantitation of proteins, statistical linear modeling. Only in the left IMM were the level of CPEB3-AF and learning strength correlated, increased CPEB3-AF level reflecting a predisposition to learn readily. CPEB3-P2 level also increased with learning strength in the left IMM, but as a result of learning. No correlations were detected in the right IMM or PPN. We propose two separate systems, both modulating synaptic strength through control of local translation. They are represented by CPEB3-AF (associated with a predisposition to learn) and soluble CPEB3 (associated with learning itself).
Collapse
|
4
|
Meparishvili M, Chitadze L, Lagani V, McCabe B, Solomonia R. Src and Memory: A Study of Filial Imprinting and Predispositions in the Domestic Chick. Front Physiol 2021; 12:736999. [PMID: 34616310 PMCID: PMC8488273 DOI: 10.3389/fphys.2021.736999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The available evidence indicates that the intermediate medial mesopallium (IMM) in the domestic chick forebrain is a site of memory formation during visual imprinting. We have studied the role of Src, an important non-receptor tyrosine kinase, in memory formation. Amounts of total Src (Total-Src) and its two phosphorylated forms, tyrosine-416 (activated, 416P-Src) and tyrosine-527 (inhibited, 527P-Src), were measured 1 and 24 h after training in the IMM and in a control brain region, the posterior pole of nidopallium (PPN). One hour after training, in the left IMM, we observed a positive correlation between the amount of 527P-Src and learning strength that was attributable to learning, and there was also a positive correlation between 416P-Src and learning strength that was attributable to a predisposition to learn readily. Twenty-four hours after training, the amount of Total-Src increased with learning strength in both the left and right IMM, and amount of 527P-Src increased with learning strength only in the left IMM; both correlations were attributable to learning. A further, negative, correlation between learning strength and 416P-Src/Total-Src in the left IMM reflected a predisposition to learn. No learning-related changes were found in the PPN control region. We suggest that there are two pools of Src; one of them in an active state and reflecting a predisposition to learn, and the second one in an inhibited condition, which increases as a result of learning. These two pools may represent two or more signaling pathways, namely, one pathway downstream of Src activated by tyrosine-416 phosphorylation and another upstream of Src, keeping the enzyme in an inactivated state via phosphorylation of tyrosine-527.
Collapse
Affiliation(s)
- Maia Meparishvili
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Lela Chitadze
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Vincenzo Lagani
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Brian McCabe
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Revaz Solomonia
- School of Natural Sciences and Medicine, Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.,I. Beritashvili Centre of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
5
|
Abstract
Visual imprinting is a learning process whereby young animals come to prefer a visual stimulus after exposure to it (training). The intermediate medial mesopallium in the domestic chick forebrain is critical for visual imprinting and contributes to molecular regulation of memory formation. Criteria used to infer that a change following training is learning-related have been formulated and published. Cognin (protein disulphide isomerase) is one of several identified plasma membrane and mitochondrial proteins that are upregulated in a learning-related way 24 hours after training. Since virtually nothing is known about the cognin interactome, we have used immunoaffinity chromatography and mass spectrometry to identify proteins that interact with cognin in the cytoplasmic and plasma membrane-mitochondrial fractions. As the learning-related upregulation of cognin has been shown to occur in the plasma membrane-mitochondrial fraction and not in the cytoplasmic fraction, we studied the effect of training on three cognin-interacting partners in the plasma membrane-mitochondrial fraction: the b5 subunit of mitochondrial ATP synthase and the alpha-2 and alpha-3 subunits of sodium-potassium ATPase. Learning-related upregulation was found in the left intermediate medial mesopallium 24 hours after training for the b5 subunit of mitochondrial ATP synthase and the alpha-2 subunit of sodium-potassium ATPase. The hemispheric asymmetry revealed here is consistent with the predominance of many other learning-related effects in the left intermediate medial mesopallium. The alpha-2 subunit of sodium-potassium ATPase is mainly expressed in astrocytes, supporting a role for these glial cells in memory.
Collapse
|
6
|
McCabe BJ. Visual Imprinting in Birds: Behavior, Models, and Neural Mechanisms. Front Physiol 2019; 10:658. [PMID: 31231236 PMCID: PMC6558373 DOI: 10.3389/fphys.2019.00658] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/09/2019] [Indexed: 12/29/2022] Open
Abstract
Filial imprinting is a process, readily observed in precocial birds, whereby a social attachment is established between a young animal and an object that is typically (although not necessarily) a parent. During a perinatal sensitive period, the young animal learns characteristics of the object (the imprinting stimulus) simply by being exposed to it and will subsequently recognize and selectively approach this stimulus. Imprinting can thus establish a filial bond with an individual adult: a form of social cohesion that may be crucial for survival. Behavioral predispositions can act together with the learning process of imprinting in the formation, maintenance, and modification of the filial bond. Memory of the imprinting stimulus, as well as being necessary for social recognition, is also used adaptively in perceptual classification of sensory signals. Abstract features of an imprinting stimulus, such as similarity or difference between stimulus components, can also be recognized. Studies of domestic chicks have elucidated the neural basis of much of the above behavior. This article discusses (1) principal behavioral characteristics of filial imprinting and related predispositions, (2) theoretical models that have been developed to account for this behavior, and (3) physiological results elucidating the underlying neural mechanisms. Interactions between these different levels of analysis have resulted in advancement of all of them. Taken together, the different approaches have helped define strategies for investigating mechanisms of learning, memory, and perception.
Collapse
Affiliation(s)
- Brian J. McCabe
- Sub-Department of Animal Behaviour, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|