1
|
Franiek A, Sharma A, Cockovski V, Wishart DS, Zappitelli M, Blydt-Hansen TD. Urinary metabolomics to develop predictors for pediatric acute kidney injury. Pediatr Nephrol 2022; 37:2079-2090. [PMID: 35006358 DOI: 10.1007/s00467-021-05380-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by an abrupt decline in glomerular filtration rate (GFR). We sought to identify separate early urinary metabolomic signatures at AKI onset (with-AKI) and prior to onset of functional impairment (pre-AKI). METHODS Pre-AKI (n=15), AKI (n=22), and respective controls (n=30) from two prospective PICU cohort studies provided urine samples which were analyzed by GC-MS and DI-MS mass spectrometry (193 metabolites). The cohort (n=58) was 8.7±6.4 years old and 66% male. AKI patients had longer PICU stays, higher PRISM scores, vasopressors requirement, and respiratory diagnosis and less commonly had trauma or post-operative diagnosis. Urine was collected within 2-3 days after admission and daily until day 5 or 14. RESULTS The metabolite classifiers for pre-AKI samples (1.5±1.1 days prior to AKI onset) had a cross-validated area under receiver operator curve (AUC)=0.93 (95%CI 0.85-1.0); with-AKI samples had an AUC=0.94 (95%CI 0.87-1.0). A parsimonious pre-AKI classifier with 13 metabolites was similarly robust (AUC=0.96, 95%CI 0.89-1.0). Both classifiers were similar and showed modest correlation of high-ranking metabolites (tau=0.47, p<0.001). CONCLUSIONS This exploratory study demonstrates the potential of a urine metabolite classifier to detect AKI-risk in pediatric populations earlier than the current standard of diagnosis with the need for external validation. A higher resolution version of the Graphical abstract is available as Supplementary information with inner reference to ESM for GA.
Collapse
Affiliation(s)
- Alexandra Franiek
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Atul Sharma
- Department of Pediatrics and Child Health, Children's Hospital at Health Sciences Center, University of Manitoba, Winnipeg, MB, Canada
| | - Vedran Cockovski
- SickKids Research Institute, University of Toronto, Toronto, ON, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, AB, Canada
| | - Michael Zappitelli
- Department of Pediatrics, Division of Nephrology, Montreal Children's Hospital, McGill University Health Centre, Montreal, Québec, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Theoretical and Practical Aspects in the Use of Bretschneider Cardioplegia. J Cardiovasc Dev Dis 2022; 9:jcdd9060178. [PMID: 35735807 PMCID: PMC9225441 DOI: 10.3390/jcdd9060178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
The race for an ideal cardioplegic solution has remained enthusiastic since the beginning of the modern cardiac surgery era. The Bretschneider solution, belonging to the “intracellular cardioplegic” group, is safe and practical in myocardial protection during ischemic time. Over time, some particular concerns have arisen regarding the effects on cardiac metabolism and postoperative myocardial functioning. This paper reviews the most important standpoints in terms of theoretical and practical analyses.
Collapse
|
3
|
Development of a method for dansylation of metabolites using organic solvent-compatible buffer systems for amine/phenol submetabolome analysis. Anal Chim Acta 2022; 1189:339218. [PMID: 34815039 DOI: 10.1016/j.aca.2021.339218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 11/21/2022]
Abstract
Metabolomics, which serves as a readout of biological processes and diseases monitoring, is an informative research area for disease biomarker discovery and systems biology studies. In particular, reversed-phase liquid chromatography-mass spectrometry (RPLC-MS) has become a powerful and popular tool for metabolomics analysis, enabling the detection of most metabolites. Very polar and ionic metabolites, however, are less easily detected because of their poor retention in RP columns. Dansylation of metabolites simplifies the sub-metabolome analysis by reducing its complexity and increasing both hydrophobicity and ionization ability. However, the various metabolite concentrations in clinical samples have a wide dynamic range with highly individual variation in total metabolite amount, such as in saliva. The bicarbonate buffer typically used in dansylation labeling reactions induces solvent stratification, resulting in poor reproducibility, selective sample loss and an increase in false-determined metabolite peaks. In this study, we optimized the dansylation protocol for samples with wide concentration range of metabolites, utilizing diisopropylethylamine (DIPEA) or tri-ethylamine (TEA) in place of bicarbonate buffer, and presented the results of a systemic investigation of the influences of individual processes involved on the overall performance of the protocol. In addition to achieving high reproducibility, substitution of DIPEA or TEA buffer resulted in similar labeling efficiency of most metabolites and more efficient labeling of some metabolites with a higher pKa. With this improvement, compounds that are only present in samples in trace amounts can be detected, and more comprehensive metabolomics profiles can be acquired for biomarker discovery or pathway analysis, making it possible to analyze clinical samples with limited amounts of metabolites.
Collapse
|
4
|
Wang LJ, Chou WJ, Tsai CS, Lee MJ, Lee SY, Hsu CW, Hsueh PC, Wu CC. Novel plasma metabolite markers of attention-deficit/hyperactivity disorder identified using high-performance chemical isotope labelling-based liquid chromatography-mass spectrometry. World J Biol Psychiatry 2021; 22:139-148. [PMID: 32351159 DOI: 10.1080/15622975.2020.1762930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Metabolites are the intermediate and final products of biological processes and ultimately reflect the responses of these processes to genetic regulation and environmental perturbations, including those involved in attention deficit/hyperactivity disorder (ADHD). METHODS We identified a quantitative profile of plasma metabolites in 58 ADHD patients (mean age 9.0 years, 77.6% males) and 38 healthy control subjects (mean age 10.2 years, 55.3% males) using the high-performance chemical isotope labelling (CIL)-based liquid chromatography-mass spectrometry (LC-MS). Using a volcano plot and orthogonal projections to latent structure-discriminant analysis (OPLS-DA), we determined nine metabolites with differentially expressed levels in ADHD plasma samples. RESULTS Compared to the control group, the plasma levels of guanosine, O-phosphoethanolamine, phenyl-leucine, hypoxanthine, 4-aminohippuric acid, 5-hydroxylysine, and L-cystine appeared increased in the ADHD patients, whilegentisic acid and tryptophyl-phenylalanine were down-regulated in the patients with ADHD. We found that the plasma levels of all nine metabolites were able to discriminate the ADHD group from the control group. Levels of O-phosphoethanolamine, 4-aminohippuric acid, 5-hydroxylysine, L-cystine, tryptophyl-phenylalanine, and gentisic acid were significantly correlated with clinical ADHD symptoms. CONCLUSIONS This study is the first to use the CIL-based LC-MS to profile ADHD plasma metabolites, and we identified nine novel metabolite biomarkers of ADHD.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Shu Tsai
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Jing Lee
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, School of Medicine, and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head & Neck Surgery, Linkuo Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Khan T, Loftus TJ, Filiberto AC, Ozrazgat-Baslanti T, Ruppert MM, Bandhyopadyay S, Laiakis EC, Arnaoutakis DJ, Bihorac A. Metabolomic Profiling for Diagnosis and Prognostication in Surgery: A Scoping Review. Ann Surg 2021; 273:258-268. [PMID: 32482979 PMCID: PMC7704904 DOI: 10.1097/sla.0000000000003935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This review assimilates and critically evaluates available literature regarding the use of metabolomic profiling in surgical decision-making. BACKGROUND Metabolomic profiling is performed by nuclear magnetic resonance spectroscopy or mass spectrometry of biofluids and tissues to quantify biomarkers (ie, sugars, amino acids, and lipids), producing diagnostic and prognostic information that has been applied among patients with cardiovascular disease, inflammatory bowel disease, cancer, and solid organ transplants. METHODS PubMed was searched from 1995 to 2019 to identify studies investigating metabolomic profiling of surgical patients. Articles were included and assimilated into relevant categories per PRISMA-ScR guidelines. Results were summarized with descriptive analytical methods. RESULTS Forty-seven studies were included, most of which were retrospective studies with small sample sizes using various combinations of analytic techniques and types of biofluids and tissues. Results suggest that metabolomic profiling has the potential to effectively screen for surgical diseases, suggest diagnoses, and predict outcomes such as postoperative complications and disease recurrence. Major barriers to clinical adoption include a lack of high-level evidence from prospective studies, heterogeneity in study design regarding tissue and biofluid procurement and analytical methods, and the absence of large, multicenter metabolome databases to facilitate systematic investigation of the efficacy, reproducibility, and generalizability of metabolomic profiling diagnoses and prognoses. CONCLUSIONS Metabolomic profiling research would benefit from standardization of study design and analytic approaches. As technologies improve and knowledge garnered from research accumulates, metabolomic profiling has the potential to provide personalized diagnostic and prognostic information to support surgical decision-making from preoperative to postdischarge phases of care.
Collapse
Affiliation(s)
- Tabassum Khan
- Department of Surgery, University of Florida, Gainesville,
FL, USA
| | - Tyler J. Loftus
- Department of Surgery, University of Florida, Gainesville,
FL, USA
| | | | - Tezcan Ozrazgat-Baslanti
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| | | | - Sabyasachi Bandhyopadyay
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| | - Evagelia C. Laiakis
- Department of Oncology, Georgetown University, Washington
DC, USA
- Department of Biochemistry and Molecular & Cellular
Biology, Georgetown University, Washington DC, USA
| | | | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville,
FL, USA
- Precision and Intelligent Systems in Medicine (PrismaP),
University of Florida, Gainesville, FL
| |
Collapse
|
6
|
Liu S, Huang Q, Wu Y, Song Y, Dong W, Chu M, Yang D, Zhang X, Zhang J, Chen C, Zhao B, Shen H, Guo X, Deng F. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. ENVIRONMENT INTERNATIONAL 2020; 138:105663. [PMID: 32203810 DOI: 10.1016/j.envint.2020.105663] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/07/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ionization air purifiers, which purify particulate matter (PM) by producing vast number of negative air ions (NAI), are widely used. Recent study implied that ionization air purification could bring respiratory benefits but deterioration of heart rate variability (HRV). However, its underlying molecular mechanisms remain unclear. OBJECTIVES To explore the molecular linkages between indoor NAI, decreased PM and the cardiorespiratory effect after purification. METHODS Urine samples were collected from 44 healthy children three times of each study period (real and sham purification) in an existing randomized, double-blind crossover study. Ultra-high performance liquid chromatography/mass spectrometry was conducted in metabolomics analysis, the associations between indoor NAI, decreased PM and the cardiorespiratory function were investigated via the meet-in-metabolite approach (MIMA) based on statistical and metabolic pathway analysis. Mixed-effect models were used to establish associations between exposure, health parameters and metabolites. RESULTS Twenty-eight and fourteen metabolites were identified with significant correlations to NAI and PM, respectively. Besides, eight and eighteen metabolites were separately associated with respiratory function and HRV. The increased NAI and decreased PM improved respiratory function mainly with eight pathways, promoting energy production, anti-inflammation and anti-oxidation capacity. Decreased PM ameliorated HRV with six main pathways, increasing energy production and anti-inflammation capacity while increased NAI deteriorated HRV with five main pathways, lowering energy generation and anti-oxidation capacity. CONCLUSIONS Increased NAI and decreased PM ameliorated respiratory function by increasing energy production, improving anti-inflammation and anti-oxidation capacity. Decreased PM improved cardiac autonomic function by increasing energy production and anti-inflammation capacity, while these benefits were overcast by massive NAI via lowering energy generation and anti-oxidation capacity with different metabolic pathways.
Collapse
Affiliation(s)
- Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yi Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Wei Dong
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Mengtian Chu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chen Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|