1
|
Liu Q, Liu M, Chen W, Yuan H, Jiang Y, Huang D, Liu H, Wang T. Recent Advances in 2-Keto-l-gulonic Acid Production Using Mixed-Culture Fermentation and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1419-1428. [PMID: 38206567 DOI: 10.1021/acs.jafc.3c08189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Meng Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Wenhu Chen
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Haibo Yuan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Yi Jiang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Di Huang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Hongling Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| | - Tengfei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
- Key Laboratory of Shandong Microbial Engineering, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, People's Republic of China
| |
Collapse
|
2
|
Li F, Wang CY, Wu YC, Zhang MY, Wang YJ, Zhou XY, Zhang YX. Enhancing the biosynthesis of 2-keto-L-gulonic acid through multi-strategy metabolic engineering in Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2024; 392:130014. [PMID: 37956951 DOI: 10.1016/j.biortech.2023.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
2-KGA, a precursor for the synthesis of Vitamin C, is currently produced in China utilizing the "two-step fermentation" technique. Nevertheless, this method exhibits many inherent constraints. This study presents a comprehensive metabolic engineering strategy to establish and optimize a one-step 2-KGA fermentation process from D-sorbitol in Pseudomonas putida KT2440. In general, the endogenous promoters were screened to identify promoter P1 for subsequent heterologous gene expression in KT2440. Following the screening and confirmation of suitable heterologous gene elements such as sldh, sdh, cytc551, pqqAB, and irrE, genetic recombination was performed in KT2440. In comparison to the initial achievement of expressing only sldh and sdh in KT2440, a yield of merely 0.42 g/L was obtained. However, by implementing four metabolic engineering strategies, the recombinant strain KT20 exhibited a significant enhancement in its ability to produce 2-KGA with a remarkable yield of up to 6.5 g/L - representing an impressive 15.48-fold improvement.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Jin Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xun-Yong Zhou
- Sinobiotech (Shenzhen) Limited Company, Shenzhen 518001, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
3
|
Li D, Chen Y, Huang F, Wang J, Li X, Yang Y. CRISPRe: An innate transcriptional enhancer for endogenous genes in CRISPR-Cas immunity. iScience 2023; 26:107814. [PMID: 37766991 PMCID: PMC10520945 DOI: 10.1016/j.isci.2023.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/20/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
CRISPR-Cas system has been repurposed to the promising strategy of CRISPR-based transcriptional interference/activation (CRISPRi/CRISPRa) without eliciting DNA breaks that enables Cas complex a block for transcription initiation or elongation, which greatly expands its application fields and values. However, loss of Cas nuclease ability, especially the endogenous nuclease, may affect genome stability seriously. Here, we found a transcriptional enhancer for genes (CRISPRe) in type I-C system of industrial strain Ketogulonicigenium vulgare by maintaining the natural activity of Cas3 nuclease and introducing the specific motifs that do not trigger immunity. CRISPRe greatly improved the expression of heterologous and endogenous genes and the biosynthesis of products by facilitating transcriptional elongation. Besides, the mechanism for pyrroloquinoline quinone (PQQ) biosynthesis regulated by coupling transcriptional-translational elongation in operon was elucidated. Hence, we enrich the toolbox for CRISPR-Cas system and provide a new framework for gene regulation at transcription.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
- School of Liquor-making Engineering, Sichuan University Jinjiang College, Meishan 620680, China
| | - Yihong Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Fei Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xufeng Li
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
An efficient 2-keto-L-gulonic acid whole-cell biotransformation system built on the characterization of L-sorbose dehydrogenase. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Ma X, Mi Y, Zhao C, Wei Q. A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151387. [PMID: 34740661 DOI: 10.1016/j.scitotenv.2021.151387] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Energy is a major driving force for the economic development. Due to the scarcity of fossil fuels and negative impact on the environment, it is important to develop renewable and sustainable energy sources for humankind. Microalgae as the primary feedstock for biodiesel has shown great application potential. However, lipid yield from microalgae is limited by the upstream cost, which restrain the realization of large-scale biofuel production. The modification of lipid-rich microalgae cell has become the focus over the last few decades to improve the lipid content and productivity of microalgae. Carbon is a vital nutrient that regulates the growth and metabolism of microalgae. Different carbon sources are assimilated by microalgae cells via different pathways. Inorganic carbon sources are mainly used through the CO2-concentrating mechanisms (CCMs), while organic carbon sources are absorbed by microalgae mainly through the Pentose Phosphate (PPP) Pathway and the Embden-Meyerhof-Pranas (EMP) pathway. Therefore, the addition of carbon source has a significant impact on the production of microalgae biomass and lipid accumulation. In this paper, mechanisms of lipid synthesis and carbon uptake of microalgae were introduced, and the effects of different carbon conditions (types, concentrations, and addition methods) on lipid accumulation in microalgal biomass production and biodiesel production were comprehensively discussed. This review also highlights the recent advances in microalgae lipid cultivation with large-scale commercialization and the development prospects of biodiesel production. Current challenges and constructive suggestions are proposed on cost-benefit concerns in large-scale production of microalgae biodiesel.
Collapse
Affiliation(s)
- Xiangmeng Ma
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, China
| | - Yuwei Mi
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Chen Zhao
- China Construction Fifth Engineering Division Corp., Ltd, 9 Kaixuan Rd, Liangqing District, Nanning, Guangxi 530000, China
| | - Qun Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
6
|
Wang CY, Liu LC, Wu YC, Zhang YX. Identification and Validation of Four Novel Promoters for Gene Engineering with Broad Suitability across Species. J Microbiol Biotechnol 2021; 31:1154-1162. [PMID: 34226414 PMCID: PMC9706022 DOI: 10.4014/jmb.2103.03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022]
Abstract
The transcriptional capacities of target genes are strongly influenced by promoters, whereas few studies have focused on the development of robust, high-performance and cross-species promoters for wide application in different bacteria. In this work, four novel promoters (Pk.rtufB, Pk.r1, Pk.r2, and Pk.r3) were predicted from Ketogulonicigenium robustum and their inconsistency in the -10 and -35 region nucleotide sequences indicated they were different promoters. Their activities were evaluated by using green fluorescent protein (gfp) as a reporter in different species of bacteria, including K. vulgare SPU B805, Pseudomonas putida KT2440, Paracoccus denitrificans PD1222, Bacillus licheniformis and Raoultella ornithinolytica, due to their importance in metabolic engineering. Our results showed that the four promoters had different activities, with Pk.r1 showing the strongest activity in almost all of the experimental bacteria. By comparison with the commonly used promoters of E. coli (tufB, lac, lacUV5), K. vulgare (Psdh, Psndh) and P. putida KT2440 (JE111411), the four promoters showed significant differences due to only 12.62% nucleotide similarities, and relatively higher ability in regulating target gene expression. Further validation experiments confirmed their ability in initiating the target minCD cassette because of the shape changes under the promoter regulation. The overexpression of sorbose dehydrogenase and cytochrome c551 by Pk.r1 and Pk.r2 resulted in a 22.75% enhancement of 2-KGA yield, indicating their potential for practical application in metabolic engineering. This study demonstrates an example of applying bioinformatics to find new biological components for gene operation and provides four novel promoters with broad suitability, which enriches the usable range of promoters to realize accurate regulation in different genetic backgrounds.
Collapse
Affiliation(s)
- Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China,Corresponding author Phone: +86-024-43520921 E-mail:
| |
Collapse
|
7
|
Liu L, Fan S, Lu Z, Chen Z, Chu C, Liu A, Xia F, Meng S, Guo F, Qiu H, Yang Y. An optimized method for the induction and purification of mouse bone marrow dendritic cells. J Immunol Methods 2021; 495:113073. [PMID: 34029621 DOI: 10.1016/j.jim.2021.113073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) play an essential role in the initiation of adaptive immune responses, but they are rare in all organs. The traditional methods used to increase the yield and purity of DCs are the early removal of granulocyte culture medium and the isolation of high-purity DCs by magnetic-activated cell sorting (MACS). This study provides a more rapid and economical optimization method to obtain more high-purity DCs. (i) We harvested 18% more bone marrow (BM) cells by using forceps to crack the epiphysis instead of cutting it with scissors during BM cell extraction. (ii) When the cells in the culture medium that is discarded on day 3 in the traditional method were centrifuged and then added back to the petri dish, the DC yield on day 5 increased by 61%. (iii) On the third day, the addition of fresh medium and the retention of the original medium rather than discarding it increased the number of DCs harvested on the fifth day by 137%. (i-iii) The improved method cost an average of 74% less than the conventional method and yielded the same number and function of cells. (iv) The initial number of BM cells was increased by 15% in 4-week-old mice compared with 8-week-old mice. (v) The Percoll density centrifugation (PDS) method was used to purify DCs on day 6 after induction, and the purity of the DCs was greater than 90%, which showed no significant difference from the MACS method. However, the yield of the PDS method increased by 21%. In addition, the PDS method has a lower cost, with an average purification cost of 4 CNY ($0.58) compared with 648 CNY ($93.25) for MACS, reducing the cost by 99%. Therefore, high-purity and high-yield DCs can be rapidly obtained through a five-step improvement in the process of BM cell extraction, induction and purification.
Collapse
Affiliation(s)
- Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanwen Fan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhonghua Lu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenxing Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|