1
|
Cheng K, Liu K, Liu S, Zhao Y, Wang Q. IGF2BP3 regulates macrophage-induced inflammation and liver damage in acute-on-chronic liver failure via the RORα-NF-κB signaling axis. Int Immunopharmacol 2024; 142:113030. [PMID: 39232362 DOI: 10.1016/j.intimp.2024.113030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024]
Abstract
Acute-on-chronic liver failure (ACLF) is a severe condition characterized by high mortality rates, and macrophage-mediated inflammation plays a critical role in its progression. Our previous research has indicated the involvement of the RNA-binding protein IGF2BP3 in the pathogenesis of ACLF. However, the underlying molecular mechanisms contributing to this damage require further elucidation. Initially, we observed heightened expression of pro-inflammatory cytokines and macrophage activation in both ACLF patients and a mouse model induced by D-GalN/LPS. Subsequent loss-of-function experiments targeting IGF2BP3 revealed that the knockdown of IGF2BP3 potentially confers hepatoprotection by mitigating macrophage-induced inflammation. Further investigation using RNA Immunoprecipitation (RIP) assays and dual luciferase reporter assays confirmed that RORα is a target protein of the RNA-binding protein IGF2BP3. Importantly, depletion of RORα was found to significantly increase liver damage and inflammation by modulating the NF-κB signaling pathway. In conclusion, our findings underscore the crucial role of IGF2BP3 in mediating liver damage induced by activated macrophages in ACLF, which is regulated by the RORα-NF-κB signaling pathway. These discoveries offer novel insights into the pathogenesis and potential therapeutic targets for ACLF.
Collapse
Affiliation(s)
- Ke Cheng
- Department of Transplantation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan 410013, China
| | - Kai Liu
- Department of Transplantation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan 410013, China
| | - Shu Liu
- Department of Transplantation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan 410013, China
| | - Yujun Zhao
- Department of Transplantation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan 410013, China
| | - Qiang Wang
- Department of Transplantation, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, Hunan 410013, China.
| |
Collapse
|
2
|
Wieszczycka K, Filipowiak K, Dudzinska P, Nowicki M, Siwińska-Ciesielczyk K, Jesionowski T. Novel Mesoporous Organosilicas with Task Ionic Liquids: Properties and High Adsorption Performance for Pb(II). Molecules 2022; 27:molecules27041405. [PMID: 35209194 PMCID: PMC8877654 DOI: 10.3390/molecules27041405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Removal of toxic contaminants such as Pb(II) from waste solutions is environmentally requested. Therefore, in this paper, for potential novel sorbents, mesoporous ionic liquid-functionalized silicas were synthesized and tested for the removal of Pb(II) from aqueous solutions. The successful synthesis of the adsorbents was proved by nuclear magnetic resonance (29Si and 13C NMR), Fourier transform infrared spectroscopy (FTIR), and elemental analysis. The structural and textural properties were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (TEM), and low-temperature N2 sorption, and the result showed that the applied procedure made it possible to obtain highly ordered particles with a two-dimensional mesostructure. The effects of several parameters including initial pH, contact time, adsorption temperature, and Pb(II) concentration were studied in detail and were discussed to evaluate the adsorption properties of the fabricated materials towards Pb(II). The obtained results confirmed a very high potential of the sorbents; however, the adsorption properties depend on the structure and amounts of the functional group onto fabricated materials. The sample ILS-Ox3-40 showed fast kinetics (equilibrium reached within 10 min) and capacity of 172 mg/g, and that makes it a promising sorbent for the cleanup of water contaminated by lead. It was also indicated that, regardless on structure of the tested materials, the Pb(II) removal was spontaneous and exothermic. The fabricated mesoporous silicas exhibited that they were easy to regenerate and had excellent reusability.
Collapse
Affiliation(s)
- Karolina Wieszczycka
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (K.F.); (P.D.); (K.S.-C.); (T.J.)
- Correspondence: ; Tel.: +48-616-653-688; Fax: +48-616-653-649
| | - Kinga Filipowiak
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (K.F.); (P.D.); (K.S.-C.); (T.J.)
| | - Patrycja Dudzinska
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (K.F.); (P.D.); (K.S.-C.); (T.J.)
| | - Marek Nowicki
- Faculty of Materials Engineering and Technical Physics, Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland;
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Katarzyna Siwińska-Ciesielczyk
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (K.F.); (P.D.); (K.S.-C.); (T.J.)
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (K.F.); (P.D.); (K.S.-C.); (T.J.)
| |
Collapse
|
3
|
Husein DZ, Uddin MK, Ansari MO, Ahmed SS. Green synthesis, characterization, application and functionality of nitrogen-doped MgO/graphene nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28014-28023. [PMID: 33527239 DOI: 10.1007/s11356-021-12628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
A facile, feasible, and green synthesis via an electrochemical exfoliation process was applied to synthesize nitrogen-doped MgO/graphene nanocomposite (N-MgO/G). The N-MgO/G nanocomposite was characterized by several analytical techniques including X-ray photoelectron spectroscopy, X-ray powder diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected area electron diffraction, and elemental mapping analysis. N-MgO/G nanocomposite was then applied to adsorb lead metal ions (Pb2+) from aqueous solutions. The N-MgO/G nanocomposite demonstrated a remarkably high Langmuir maximum adsorption capacity (294.12 mg/g) for Pb2+ ions under the optimum experimental conditions at a pH of 5.13, time of 35 min, dose of 0.025 g, the concentration of 400 mg/L, and a temperature of 36 °C. Adsorption kinetics results fitted with a pseudo-second-order model and a thermodynamic study showed that Pb2+ adsorption is an endothermic process. The practical application of N-MgO/G was also investigated to test its applicability in real water samples collected from different sources such as deionized water, tap water, wastewater, and river water.
Collapse
Affiliation(s)
- Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Mohammad Kashif Uddin
- Department of Chemistry, College of Science, Majmaah University, Zulfi Campus, Al-Zulfi, 11932, Saudi Arabia.
| | | | - Sameh S Ahmed
- Mining and Metallurgical Engineering Department, Faculty of Engineering, Assiut University, Assiut, 71516, Egypt
- Civil and Environmental Engineering Department, College of Engineering, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| |
Collapse
|
4
|
Two-dimensional metal-organic framework nanobelts for selective Fe3+ removal from aqueous solution with high adsorption capacity. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|