1
|
Kondo Y, Sasaki K, Higuchi H. Fast backward steps and detachment of single kinesin molecules measured under a wide range of loads. Traffic 2023; 24:463-474. [PMID: 37679870 DOI: 10.1111/tra.12909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 09/09/2023]
Abstract
To understand force generation under a wide range of loads, the stepping of single kinesin molecules was measured at loads from -20 to 42 pN by optical tweezers with high temporal resolution. The optical trap has been improved to halve positional noise and increase bandwidth by using 200-nm beads. The step size of the forward and backward steps was 8.2 nm even over a wide range of loads. Histograms of the dwell times of backward steps and detachment fit well to two independent exponential equations with fast (~0.4 ms) and slow (>3 ms) time constants, indicating the existence of a fast step in addition to the conventional slow step. The dwell times of the fast steps were almost independent of the load and ATP concentration, while those of the slow backward steps and detachment depended on those. We constructed the kinetic model to explain the fast and slow steps under a wide range of loads.
Collapse
Affiliation(s)
- Yuichi Kondo
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuo Sasaki
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Hideo Higuchi
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Munoz O, Klumpp S. Tug-of-War and Coordination in Bidirectional Transport by Molecular Motors. J Phys Chem B 2022; 126:7957-7965. [PMID: 36194780 DOI: 10.1021/acs.jpcb.2c05194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many cargoes in cells are transported in a bidirectional fashion by molecular motors pulling into opposite directions along a cytoskeletal filament, e.g., by kinesins and dyneins along microtubules. How opposite-polarity motors are coordinated has been under debate for a long time, with experimental evidence supporting both a tug-of-war between the motors as well as biochemical coordination mechanisms. Here we propose a model that extends a tug-of-war model by a mechanism of motor activation and inactivation and show that this model can explain some observations that are incompatible with a simple tug-of-war scenario, specifically long unidirectional runs and a directional memory after unbinding from the filament. Both features are present in two variants of the model in which motors are activated and inactivated individually and in opposite-direction pairs, respectively.
Collapse
Affiliation(s)
- Omar Munoz
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, University of Göttingen, Friedrich-Hund-Platz 1, 37077Göttingen, Germany
| |
Collapse
|
4
|
Al Azzam O, Trussell CL, Reinemann DN. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers. Cytoskeleton (Hoboken) 2021; 78:111-125. [PMID: 34051127 DOI: 10.1002/cm.21678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Kinesins and microtubule associated proteins (MAPs) are critical to sustain life, facilitating cargo transport, cell division, and motility. To interrogate the mechanistic underpinnings of their function, these microtubule-based motors and proteins have been studied extensively at the single molecule level. However, a long-standing issue in the single molecule biophysics field has been how to investigate motors and associated proteins within a physiologically relevant environment in vitro. While the one motor/one filament orientation of a traditional optical trapping assay has revolutionized our knowledge of motor protein mechanics, this reductionist geometry does not reflect the structural hierarchy in which many motors work within the cellular environment. Here, we review approaches that combine the precision of optical tweezers with reconstituted ensemble systems of microtubules, MAPs, and kinesins to understand how each of these unique elements work together to perform large scale cellular tasks, such as but not limited to building the mitotic spindle. Not only did these studies develop novel techniques for investigating motor proteins in vitro, but they also illuminate ensemble filament and motor synergy that helps bridge the mechanistic knowledge gap between previous single molecule and cell level studies.
Collapse
Affiliation(s)
- Omayma Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Cameron Lee Trussell
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Dana N Reinemann
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA.,Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
5
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
6
|
Rueangkham N, Estabrook ID, Hawkins RJ. Modelling cytoskeletal transport by clusters of non-processive molecular motors with limited binding sites. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200527. [PMID: 32968517 PMCID: PMC7481682 DOI: 10.1098/rsos.200527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Molecular motors are responsible for intracellular transport of a variety of biological cargo. We consider the collective behaviour of a finite number of motors attached on a cargo. We extend previous analytical work on processive motors to the case of non-processive motors, which stochastically bind on and off cytoskeletal filaments with a limited number of binding sites available. Physically, motors attached to a cargo cannot bind anywhere along the filaments, so the number of accessible binding sites on the filament should be limited. Thus, we analytically study the distribution and the velocity of a cluster of non-processive motors with limited number of binding sites. To validate our analytical results and to go beyond the level of detail possible analytically, we perform Monte Carlo latticed based stochastic simulations. In particular, in our simulations, we include sequence preservation of motors performing stepping and binding obeying a simple exclusion process. We find that limiting the number of binding sites reduces the probability of non-processive motors binding but has a relatively small effect on force-velocity relations. Our analytical and stochastic simulation results compare well to published data from in vitro and in vivo experiments.
Collapse
|
7
|
Chen K, Nam W, Epureanu BI. Collective intracellular cargo transport by multiple kinesins on multiple microtubules. Phys Rev E 2020; 101:052413. [PMID: 32575243 DOI: 10.1103/physreve.101.052413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
The transport of intracellular organelles is accomplished by groups of molecular motors, such as kinesin, myosin, and dynein. Previous studies have demonstrated that the cooperation between kinesins on a track is beneficial for long transport. However, within crowded three-dimensional (3D) cytoskeletal networks, surplus motors could impair transport and lead to traffic jams of cargos. Comprehensive understanding of the effects of the interactions among molecular motors, cargo, and tracks on the 3D cargo transport dynamics is still lack. In this work, a 3D stochastic multiphysics model is introduced to study the synergistic and antagonistic motions of kinesin motors walking on multiple mircotubules (MTs). Based on the model, we show that kinesins attaching to a common cargo can interact mechanically through the transient forces in their cargo linkers. Under different environmental conditions, such as different MT topologies and kinesin concentrations, the transient forces in the kinesins, the stepping frequency and the binding and unbinding probabilities of kinesins are changed substantially. Therefore, the macroscopic transport properties, specifically the stall force of the cargo, the transport direction at track intersections, and the mean-square displacement (MSD) of the cargo along the MT bundles vary over the environmental conditions. In general, conditions that improve the synergistic motion of kinesins increase the stall force of the cargo and the capability of maintaining the transport. In contrast, the antagonistic motion of kinesins temporarily traps the cargo and slows down the transport. Furthermore, this study predicts an optimal number of kinesins for the cargo transport at MT intersections and along MT bundles.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| | - Woochul Nam
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bogdan I Epureanu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
8
|
Uçar MC, Lipowsky R. Collective Force Generation by Molecular Motors Is Determined by Strain-Induced Unbinding. NANO LETTERS 2020; 20:669-676. [PMID: 31797672 DOI: 10.1021/acs.nanolett.9b04445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the living cell, we encounter a large variety of motile processes such as organelle transport and cytoskeleton remodeling. These processes are driven by motor proteins that generate force by transducing chemical free energy into mechanical work. In many cases, the molecular motors work in teams to collectively generate larger forces. Recent optical trapping experiments on small teams of cytoskeletal motors indicated that the collectively generated force increases with the size of the motor team but that this increase depends on the motor type and on whether the motors are studied in vitro or in vivo. Here, we use the theory of stochastic processes to describe the motion of N motors in a stationary optical trap and to compute the N-dependence of the collectively generated forces. We consider six distinct motor types, two kinesins, two dyneins, and two myosins. We show that the force increases always linearly with N but with a prefactor that depends on the performance of the single motor. Surprisingly, this prefactor increases for weaker motors with a lower stall force. This counter-intuitive behavior reflects the increased probability with which stronger motors detach from the filament during strain generation. Our theoretical results are in quantitative agreement with experimental data on small teams of kinesin-1 motors.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria , Am Campus 1 , 3400 Klosterneuburg , Austria
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| |
Collapse
|