1
|
Jang Y, Moon JH, Jeon BK, Park HJ, Lee HJ, Lee DY. Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals. J Microbiol Biotechnol 2023; 33:1351-1360. [PMID: 37415082 PMCID: PMC10619556 DOI: 10.4014/jmb.2301.01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.
Collapse
Affiliation(s)
- Yurim Jang
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyun Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Kwan Jeon
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Do Yup Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Habib AA, Waheed W. Guillain-Barré Syndrome. Continuum (Minneap Minn) 2023; 29:1327-1356. [PMID: 37851033 DOI: 10.1212/con.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article summarizes the clinical features, diagnostic criteria, differential diagnosis, pathogenesis, and prognosis of Guillain-Barré syndrome (GBS), with insights into the current and future diagnostic and therapeutic interventions for this neuromuscular syndrome. LATEST DEVELOPMENTS GBS is an acute, inflammatory, immune-mediated polyradiculoneuropathy that encompasses many clinical variants and divergent pathogenic mechanisms that lead to axonal, demyelinating, or mixed findings on electrodiagnostic studies. The type of antecedent infection, the development of pathogenic cross-reactive antibodies via molecular mimicry, and the location of the target gangliosides affect the subtype and severity of the illness. The data from the International GBS Outcome Study have highlighted regional variances, provided new and internationally validated prognosis tools that are beneficial for counseling, and introduced a platform for discussion of GBS-related open questions. New research has been undertaken, including research on novel diagnostic and therapeutic biomarkers, which may lead to new therapies. ESSENTIAL POINTS GBS is among the most frequent life-threatening neuromuscular emergencies in the world. At least 20% of patients with GBS have a poor prognosis and significant residual deficits despite receiving available treatments. Research is ongoing to further understand the pathogenesis of the disorder, find new biomarkers, and develop more effective and specific treatments.
Collapse
|
3
|
Park SJ, Park MJ, Park S, Lee ES, Lee DY. Integrative metabolomics of plasma and PBMCs identifies distinctive metabolic signatures in Behçet's disease. Arthritis Res Ther 2023; 25:5. [PMID: 36609408 PMCID: PMC9824930 DOI: 10.1186/s13075-022-02986-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Behçet's disease (BD) is a systemic inflammatory disease that involves various organs. The clinical manifestation-based diagnosis of BD is a time-consuming process, which makes it difficult to distinguish from patients with similar symptoms. Moreover, an authentic biomarker has not been developed for accurate diagnosis yet. Our current study investigated the unique metabolic signatures of BD and explored biomarkers for precise diagnosis based on an untargeted metabolomic approach. METHODS Integrative metabolomic and lipidomic profiling was performed on plasma samples of BD patients (n = 40), healthy controls (HCs, n = 18), and disease controls (DCs, n = 17) using GC-TOF MS and LC-Orbitrap MS. Additionally, the lipid profiles of 66 peripheral blood mononuclear cells (PBMCs) were analyzed from 29 BD patients, 18 HCs, and 19 DCs. RESULTS Plasma metabolic dysfunction in BD was determined in carbohydrate, hydroxy fatty acid, and polyunsaturated fatty acid metabolisms. A plasma biomarker panel with 13 compounds was constructed, which simultaneously distinguished BD from HC and DC (AUCs ranged from 0.810 to 0.966). Dysregulated PBMC metabolome was signatured by a significant elevation in lysophosphatidylcholines (LPCs) and ether-linked lysophosphatidylethanolamines (EtherLPEs). Ten PBMC-derived lipid composites showed good discrimination power (AUCs ranged from 0.900 to 0.973). Correlation analysis revealed a potential association between disease activity and the metabolites of plasma and PBMC, including sphingosine-1 phosphate and EtherLPE 18:2. CONCLUSIONS We identified metabolic biomarkers from plasma PBMC, which selectively discriminated BD from healthy control and patients with similar symptoms (recurrent mouth ulcers with/without genital ulcers). The strong correlation was determined between the BD activity and the lipid molecules. These findings may lead to the development for diagnostic and prognostic biomarkers based on a better understanding of the BD pathomechanism.
Collapse
Affiliation(s)
- Soo Jin Park
- grid.31501.360000 0004 0470 5905Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Mi Jin Park
- grid.251916.80000 0004 0532 3933Department of Dermatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Sun Park
- grid.251916.80000 0004 0532 3933Department of Microbiology, Ajou University School of Medicine, Suwon, 16499 Republic of Korea
| | - Eun-So Lee
- Department of Dermatology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea. .,Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Liu Z, Waters J, Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J 2022; 45:594-606. [PMID: 35042018 PMCID: PMC9486246 DOI: 10.1016/j.bj.2022.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system that usually affects young adults. The development of MS is closely related to the changes in the metabolome. Metabolomics studies have been performed using biofluids or tissue samples from rodent models and human patients to reveal metabolic alterations associated with MS progression. This review aims to provide an overview of the applications of metabolomics that for the investigations of the perturbed metabolic pathways in MS and to reveal the potential of metabolomics in personalizing treatments. In conclusion, informative variations of metabolites can be potential biomarkers in advancing our understanding of MS pathogenesis for MS diagnosis, predicting the progression of the disease, and estimating drug effects. Metabolomics will be a promising technique for improving clinical care in MS.
Collapse
Affiliation(s)
- Zhicheng Liu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs School of Pharmacy, Anhui Medical University, Hefei, China.
| | - Jeffrey Waters
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Bin Rui
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA.
| |
Collapse
|
5
|
Yu JS, Youn GS, Choi J, Kim C, Kim BY, Yang S, Lee JH, Park T, Kim BK, Kim YB, Roh SW, Min BH, Park HJ, Yoon SJ, Lee NY, Choi YR, Kim HS, Gupta H, Sung H, Han SH, Suk KT, Lee DY. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of non-alcoholic fatty liver disease. Clin Transl Med 2021; 11:e634. [PMID: 34965016 PMCID: PMC8715831 DOI: 10.1002/ctm2.634] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.
Collapse
Affiliation(s)
- Jeong Seok Yu
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Jieun Choi
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Chang‐Ho Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | | | | | | | - Tae‐Sik Park
- Department of Life ScienceGachon UniversitySungnamRepublic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research InstituteGyeonggi‐doRepublic of Korea
| | - Yeon Bee Kim
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Seong Woon Roh
- Microbiology and Functionality Research GroupWorld Institute of KimchiGwangjuRepublic of Korea
| | - Byeong Hyun Min
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Na Young Lee
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Ye Rin Choi
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hyeong Seob Kim
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Hotaik Sung
- School of MedicineKyungpook National UniversityDaeguRepublic of Korea
| | - Sang Hak Han
- Department of PathologyHallym University College of MedicineChuncheonRepublic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive DiseasesHallym UniversityChuncheonRepublic of Korea
| | - Do Yup Lee
- Department of Agricultural BiotechnologyCenter for Food and BioconvergenceResearch Institute for Agricultural and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Wieske L, Smyth D, Lunn MP, Eftimov F, Teunissen CE. Fluid Biomarkers for Monitoring Structural Changes in Polyneuropathies: Their Use in Clinical Practice and Trials. Neurotherapeutics 2021; 18:2351-2367. [PMID: 34661878 PMCID: PMC8522180 DOI: 10.1007/s13311-021-01136-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Reliable and responsive tools for monitoring disease activity and treatment outcomes in patients with neuropathies are lacking. With the emergence of ultrasensitive blood bioassays, proteins released with nerve damage are potentially useful response biomarkers for many neurological disorders, including polyneuropathies. In this review, we provide an overview of the existing literature focusing on potential applications in polyneuropathy clinical care and trials. Whilst several promising candidates have been identified, no studies have investigated if any of these proteins can serve as response biomarkers of longitudinal disease activity, except for neurofilament light (NfL). For NfL, limited evidence exists supporting a role as a response biomarker in Guillain-Barré syndrome, vasculitic neuropathy, and chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Most evidence exists for NfL as a response biomarker in hereditary transthyretin-related amyloidosis (hATTR). At the present time, the role of NfL is therefore limited to a supporting clinical tool or exploratory endpoint in trials. Future developments will need to focus on the discovery of additional biomarkers for anatomically specific and other forms of nerve damage using high-throughput technologies and highly sensitive analytical platforms in adequality powered studies of appropriate design. For NfL, a better understanding of cut-off values, the relation to clinical symptoms and long-term disability as well as dynamics in serum on and off treatment is needed to further expand and proceed towards implementation.
Collapse
Affiliation(s)
- Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Duncan Smyth
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Michael P Lunn
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Yan J, Kuzhiumparambil U, Bandodkar S, Dale RC, Fu S. Cerebrospinal fluid metabolomics: detection of neuroinflammation in human central nervous system disease. Clin Transl Immunology 2021; 10:e1318. [PMID: 34386234 PMCID: PMC8343457 DOI: 10.1002/cti2.1318] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/26/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
The high morbidity and mortality of neuroinflammatory diseases drives significant interest in understanding the underlying mechanisms involved in the innate and adaptive immune response of the central nervous system (CNS). Diagnostic biomarkers are important to define treatable neuroinflammation. Metabolomics is a rapidly evolving research area offering novel insights into metabolic pathways, and elucidation of reliable metabolites as biomarkers for diseases. This review focuses on the emerging literature regarding the detection of neuroinflammation using cerebrospinal fluid (CSF) metabolomics in human cohort studies. Studies of classic neuroinflammatory disorders such as encephalitis, CNS infection and multiple sclerosis confirm the utility of CSF metabolomics. Additionally, studies in neurodegeneration and neuropsychiatry support the emerging potential of CSF metabolomics to detect neuroinflammation in common CNS diseases such as Alzheimer's disease and depression. We demonstrate metabolites in the tryptophan-kynurenine pathway, nitric oxide pathway, neopterin and major lipid species show moderately consistent ability to differentiate patients with neuroinflammation from controls. Integration of CSF metabolomics into clinical practice is warranted to improve recognition and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Jingya Yan
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| | | | - Sushil Bandodkar
- Department of Clinical BiochemistryThe Children's Hospital at WestmeadSydneyNSWAustralia
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Russell C Dale
- Clinical SchoolThe Children's Hospital at WestmeadFaculty of Medicine and HealthUniversity of SydneySydneyNSWAustralia
| | - Shanlin Fu
- Centre for Forensic ScienceUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
8
|
|
9
|
García-Aguilera ME, de San Miguel ER, Cruz-Pérez J, Aguirre-Cruz L, Ramirez-Alfaro CM, Esturau-Escofet N. NMR-based metabolomics of human cerebrospinal fluid identifies signature of brain death. Metabolomics 2021; 17:40. [PMID: 33864540 DOI: 10.1007/s11306-021-01794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Brain death (BD) is the irreversible cessation of all functions of the entire brain, including the brainstem. Cerebrospinal fluid (CSF) is a biological liquid that circulates in brain and spine. Metabolomics is able to reveal the response of biological systems to diverse factors in a specific moment or condition. Therefore, the study of this neurological condition through metabolic profiling using high resolution Nuclear Magnetic Resonance (NMR) spectroscopy is important for understanding biochemical events. OBJECTIVES The aim of the current study is to identify the metabolomics signature of BD using 1H-NMR spectroscopy in human CSF. METHODS 1H-NMR spectroscopy has been employed for metabolomic untargeted analysis in 46 CSF samples: 22 control and 24 with BD. Spectral data were further subjected to multivariate analysis. RESULTS Statistically significant multivariate models separated subject's samples with BD from controls and revealed twenty one discriminatory metabolites. The statistical analysis of control and BD subjects using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) model resulted in R2X of 0.733 and Q2 of 0.635. An elevation in the concentration of statistically discriminant metabolites in BD was observed. CONCLUSION This study identifies a metabolic signature associated with BD and the most relevant enriched selected metabolic pathways.
Collapse
Affiliation(s)
- Martha E García-Aguilera
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Eduardo Rodríguez de San Miguel
- Departamento de Química Analítica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cd., Mexico City, Mexico
| | - Jocelyn Cruz-Pérez
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes sur 3877, 14269, Mexico City, Mexico
| | - Lucinda Aguirre-Cruz
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes sur 3877, 14269, Mexico City, Mexico
| | - Christian M Ramirez-Alfaro
- Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Av. Insurgentes sur 3877, 14269, Mexico City, Mexico
| | - Nuria Esturau-Escofet
- Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, 04510, Mexico City, Mexico.
| |
Collapse
|
10
|
Park SJ, Choi JW. Brain energy metabolism and multiple sclerosis: progress and prospects. Arch Pharm Res 2020; 43:1017-1030. [PMID: 33119885 DOI: 10.1007/s12272-020-01278-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease accompanied with nerve pain and paralysis. Although various pathogenic causes of MS have been suggested, including genetic and environmental factors, how MS occurs remains unclear. Moreover, MS should be diagnosed based on clinical experiences because of no disease-specific biomarker and currently available treatments for MS just can reduce relapsing frequency or severity with little effects on disease disability. Therefore, more efforts are required to identify pathophysiology of MS and diagnosis markers. Recent evidence indicates another aspect of MS pathogenesis, energy failure in the central nervous system (CNS). For instance, inflammation that is a characteristic MS symptom and occurs frequently in the CNS of MS patients can result into energy failure in mitochondria and cytosol. Indeed, metabolomics studies for MS have reported energy failure in oxidative phosphorylation and alteration of aerobic glycolysis. Therefore, studies on the metabolism in the CNS may provide another insight for understanding complexity of MS and pathogenesis, which would facilitate the discovery of promising strategies for developing therapeutics to treat MS. This review will provide an overview on recent progress of metabolomic studies for MS, with a focus on the fluctuation of energy metabolism in MS.
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21936, Korea.
| |
Collapse
|
11
|
Cerebrospinal fluid lipidomic biomarker signatures of demyelination for multiple sclerosis and Guillain-Barré syndrome. Sci Rep 2020; 10:18380. [PMID: 33110173 PMCID: PMC7592055 DOI: 10.1038/s41598-020-75502-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Guillain–Barré syndrome (GBS) are demyelinating disorders affecting the central nervous system and peripheral nervous system (PNS), respectively. Cerebrospinal fluid (CSF) is one of the most valuable sources of diagnostic biomarkers in neurological diseases. In the present study high sensitivity shotgun mass spectrometry was used to characterise the CSF lipidome of patients with MS, GBS and controls with non-demyelinating diseases. The quantification of 222 CSF lipid molecular species revealed characteristic changes in the absolute and relative lipid concentrations in MS and GBS compared to the controls. For the GBS group, the fourfold elevation in the total lipid content was a discriminatory and a newly identified feature of PNS demyelination. In contrast, in MS, the accumulation of the myelin-derived cerebrosides represented a specific feature of demyelination. As a common feature of demyelination, we identified upregulated levels of lipid metabolic intermediates. We found strong positive correlation between total protein content and lipid concentrations in both diseases. By exploring the CSF lipidome we demonstrate usefulness of broad-range shotgun lipidomic analysis as a fast and reliable method of biomarker discovery in patients with demyelinating neurological disorders that might be a valuable diagnostic complement to existing examinations.
Collapse
|
12
|
Lee SM, Kang Y, Lee EM, Jung YM, Hong S, Park SJ, Park CW, Norwitz ER, Lee DY, Park JS. Metabolomic biomarkers in midtrimester maternal plasma can accurately predict the development of preeclampsia. Sci Rep 2020; 10:16142. [PMID: 32999354 PMCID: PMC7527521 DOI: 10.1038/s41598-020-72852-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023] Open
Abstract
Early identification of patients at risk of developing preeclampsia (PE) would allow providers to tailor their prenatal management and adopt preventive strategies, such as low-dose aspirin. Nevertheless, no mid-trimester biomarkers have as yet been proven useful for prediction of PE. This study investigates the ability of metabolomic biomarkers in mid-trimester maternal plasma to predict PE. A case–control study was conducted including 33 pregnant women with mid-trimester maternal plasma (gestational age [GA], 16–24 weeks) who subsequently developed PE and 66 GA-matched controls with normal outcomes (mid-trimester cohort). Plasma samples were comprehensively profiled for primary metabolic and lipidomic signatures based on gas chromatography time-of-flight mass spectrometry (GC-TOF MS) and liquid chromatography Orbitrap mass spectrometry (LC-Orbitrap MS). A potential biomarker panel was computed based on binary logistic regression and evaluated using receiver operating characteristic (ROC) analysis. To evaluate whether this panel can be also used in late pregnancy, a retrospective cohort study was conducted using plasma collected from women who delivered in the late preterm period because of PE (n = 13) or other causes (n = 21) (at-delivery cohort). Metabolomic biomarkers were compared according to the indication for delivery. Performance of the metabolomic panel to identify patients with PE was compared also to a commonly used standard, the plasma soluble fms-like tyrosine kinase-1/placental growth factor (sFlt-1/PlGF) ratio. In the mid-trimester cohort, a total of 329 metabolites were identified and semi-quantified in maternal plasma using GC-TOF MS and LC-Orbitrap-MS. Binary logistic regression analysis proposed a mid-trimester biomarker panel for the prediction of PE with five metabolites (SM C28:1, SM C30:1, LysoPC C19:0, LysoPE C20:0, propane-1,3-diol). This metabolomic model predicted PE better than PlGF (AUC [95% CI]: 0.868 [0.844–0.891] vs 0.604 [0.485–0.723]) and sFlt-1/PlGF ratio. Analysis of plasma from the at-delivery cohort confirmed the ability of this biomarker panel to distinguish PE from non-PE, with comparable discrimination power to that of the sFlt-1/PlGF ratio. In conclusion, an integrative metabolomic biomarker panel in mid-trimester maternal plasma can accurately predict the development of PE and showed good discriminatory power in patients with PE at delivery.
Collapse
Affiliation(s)
- Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Yujin Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Young Mi Jung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Subeen Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Errol R Norwitz
- Department of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Joong Shin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
13
|
Gaire BP, Lee CH, Kim W, Sapkota A, Lee DY, Choi JW. Lysophosphatidic Acid Receptor 5 Contributes to Imiquimod-Induced Psoriasis-Like Lesions through NLRP3 Inflammasome Activation in Macrophages. Cells 2020; 9:cells9081753. [PMID: 32707926 PMCID: PMC7465035 DOI: 10.3390/cells9081753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
The pathogenesis of psoriasis, an immune-mediated chronic skin barrier disease, is not fully understood yet. Here, we identified lysophosphatidic acid (LPA) receptor 5 (LPA5)-mediated signaling as a novel pathogenic factor in psoriasis using an imiquimod-induced psoriasis mouse model. Amounts of most LPA species were markedly elevated in injured skin of psoriasis mice, along with LPA5 upregulation in injured skin. Suppressing the activity of LPA5 with TCLPA5, a selective LPA5 antagonist, improved psoriasis symptoms, including ear thickening, skin erythema, and skin scaling in imiquimod-challenged mice. TCLPA5 administration attenuated dermal infiltration of macrophages that were found as the major cell type for LPA5 upregulation in psoriasis lesions. Notably, TCLPA5 administration attenuated the upregulation of macrophage NLRP3 in injured skin of mice with imiquimod-induced psoriasis. This critical role of LPA5 in macrophage NLRP3 was further addressed using lipopolysaccharide-primed bone marrow-derived macrophages. LPA exposure activated NLRP3 inflammasome in lipopolysaccharide-primed cells, which was evidenced by NLRP3 upregulation, caspase-1 activation, and IL-1β maturation/secretion. This LPA-driven NLRP3 inflammasome activation in lipopolysaccharide-primed cells was significantly attenuated upon LPA5 knockdown. Overall, our findings establish a pathogenic role of LPA5 in psoriasis along with an underlying mechanism, further suggesting LPA5 antagonism as a potential strategy to treat psoriasis.
Collapse
Affiliation(s)
- Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Chi-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Wondong Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Korea; (B.P.G.); (C.-H.L.); (W.K.); (A.S.)
- Correspondence: ; Tel.: +82-32-820-4955
| |
Collapse
|
14
|
Lee NY, Yoon SJ, Han DH, Gupta H, Youn GS, Shin MJ, Ham YL, Kwak MJ, Kim BY, Yu JS, Lee DY, Park TS, Park SH, Kim BK, Joung HC, Choi IS, Hong JT, Kim DJ, Han SH, Suk KT. Lactobacillus and Pediococcus ameliorate progression of non-alcoholic fatty liver disease through modulation of the gut microbiome. Gut Microbes 2020; 11:882-899. [PMID: 31965894 PMCID: PMC7524267 DOI: 10.1080/19490976.2020.1712984] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Targeting the gut-liver axis by modulating the gut-microbiome can be a promising therapeutic approach in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effects of single species and a combination of Lactobacillus and Pediococcus in NAFLD mice model. Six-week male C57BL/6J mice were divided into 9 groups (n = 10/group; normal, Western diet, and 7 Western diet-strains [109 CFU/g, 8 weeks]). The strains used were L. bulgaricus, L. casei, L. helveticus, P. pentosaceus KID7, and three combinations (1: L. casei+L. helveticus, 2: L. casei+L. helveticus+P. pentosaceus KID7, and 3: L. casei+L. helveticus+L. bulgaricus). Liver/Body weight ratio, serum and stool analysis, liver pathology, and metagenomics by 16S rRNA-sequencing were examined. In the liver/body ratio, L. bulgaricus (5.1 ± 0.5), L. helveticus (5.2 ± 0.4), P. pentosaceus KID7 (5.5 ± 0.5), and combination1 and 2 (4.2 ± 0.6 and 4.8 ± 0.7) showed significant reductions compared with Western (6.2 ± 0.6)(p < 0.001). In terms of cholesterol and steatosis/inflammation/NAFLD activity, all groups except for L. casei were associated with an improvement (p < .05). The elevated level of tumor necrosis factor-α/interleukin-1β (pg/ml) in Western (65.8 ± 7.9/163.8 ± 12.2) was found to be significantly reduced in L. bulgaricus (24.2 ± 1.0/58.9 ± 15.3), L. casei (35.6 ± 2.1/62.9 ± 6.0), L. helveticus (43.4 ± 3.2/53.6 ± 7.5), and P. pentosaceus KID7 (22.9 ± 3.4/59.7 ± 12.2)(p < 0.01). Cytokines were improved in the combination groups. In metagenomics, each strains revealed a different composition and elevated Firmicutes/Bacteroidetes ratio in the western (47.1) was decreased in L. bulgaricus (14.5), L. helveticus (3.0), and P. pentosaceus KID7 (13.3). L. bulgaricus, L. casei, L. helveticus, and P. pentosaceus KID7 supplementation can improve NAFLD-progression by modulating gut-microbiome and inflammatory pathway.
Collapse
Affiliation(s)
- Na Young Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Dae Hee Han
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Gi Soo Youn
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Jea Shin
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Young Lim Ham
- Department of Nursing, Daewon University College, Jaecheon, Republic of Korea
| | | | | | - Jeong Seok Yu
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea,Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Si-Hyun Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Byoung Kook Kim
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - In Suk Choi
- Chong Kun Dang Bio Research Institute, Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Ji Taek Hong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea,Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea,Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea,Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, Republic of Korea,CONTACT Ki Tae Suk Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Gyo-dong, Chuncheon24253, South Korea
| |
Collapse
|
15
|
Explorative study of serum biomarkers of liver failure after liver resection. Sci Rep 2020; 10:9960. [PMID: 32561884 PMCID: PMC7305107 DOI: 10.1038/s41598-020-66947-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Conventional biochemical markers have limited usefulness in the prediction of early liver dysfunction. We, therefore, tried to find more useful liver failure biomarkers after liver resection that are highly sensitive to internal and external challenges in the biological system with a focus on liver metabolites. Twenty pigs were divided into the following 3 groups: sham operation group (n = 6), 70% hepatectomy group (n = 7) as a safety margin of resection model, and 90% hepatectomy group (n = 7) as a liver failure model. Blood sampling was performed preoperatively and at 1, 6, 14, 30, 38, and 48 hours after surgery, and 129 primary metabolites were profiled. Orthogonal projection to latent structures-discriminant analysis revealed that, unlike in the 70% hepatectomy and sham operation groups, central carbon metabolism was the most significant factor in the 90% hepatectomy group. Binary logistic regression analysis was used to develop a predictive model for mortality risk following hepatectomy. The recommended variables were malic acid, methionine, tryptophan, glucose, and γ-aminobutyric acid. Area under the curve of the linear combination of five metabolites was 0.993 (95% confidence interval: 0.927–1.000, sensitivity: 100.0, specificity: 94.87). We proposed robust biomarker panels that can accurately predict mortality risk associated with hepatectomy.
Collapse
|
16
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
17
|
Park SJ, Lee J, Lee S, Lim S, Noh J, Cho SY, Ha J, Kim H, Kim C, Park S, Lee DY, Kim E. Exposure of ultrafine particulate matter causes glutathione redox imbalance in the hippocampus: A neurometabolic susceptibility to Alzheimer's pathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137267. [PMID: 32088476 DOI: 10.1016/j.scitotenv.2020.137267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Particulate matter (PM) exposure is related to an increased risk of sporadic Alzheimer's disease (AD), the pathogenesis of which is explained by chronic neurometabolic disturbance. Therefore, PM-induced alterations in neurometabolism might herald AD. We aimed to identify brain region-specific changes in metabolic pathways associated with ultrafine particle (UFP) exposure and to determine whether such metabolic alterations are linked to susceptibility to AD. We constructed UFP exposure chambers and generated UFP by the pyrolysis method, which produces no toxic oxidized by-products of combustion, such as NOx and CO. Twenty male C57BL6 mice (11-12 months old) were exposed either to UFP or room air in the chambers for 3 weeks. One week following completion of UFP exposure, regional brain tissues, including the olfactory bulb, cortex, hippocampus, and cerebellum, were obtained and analyzed by metabolomics based on GC-MS and LC-MS, western blot analysis, and immunohistochemistry. Our results demonstrated that the metabolomic phenotype was distinct within the 4 different anatomical regions following UFP exposure. The highest level of metabolic change was identified in the hippocampus, a vulnerable region involved in AD pathogenesis. In this region, one of the key changes was perturbed redox homeostasis via alterations in the methionine-glutathione pathway. UFP exposure also induced oxidative stress and neuroinflammation, and importantly, increased Alzheimer's beta-amyloid levels in the hippocampus. These results suggest that inhaled UFP-induced perturbation in hippocampal redox homeostasis has a role in the pathogenesis of AD. Therefore, chronic exposure to UFP should be regarded as a cumulative environmental risk factor for sporadic AD.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seunghoon Lee
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea
| | - Sangchul Lim
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea
| | - Juhwan Noh
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; Institute of Human Complexity and Systems Science, Yonsei University, Seoul, Republic of Korea
| | - Sunho Park
- Department of Mechanical Engineering, Dankook University, Gyeonggi-do, Yongin, Republic of Korea.
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, BK21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Shang P, Zhu M, Wang Y, Zheng X, Wu X, Zhu J, Feng J, Zhang HL. Axonal variants of Guillain-Barré syndrome: an update. J Neurol 2020; 268:2402-2419. [PMID: 32140865 DOI: 10.1007/s00415-020-09742-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Axonal variants of Guillain-Barré syndrome (GBS) mainly include acute motor axonal neuropathy, acute motor and sensory axonal neuropathy, and pharyngeal-cervical-brachial weakness. Molecular mimicry of human gangliosides by a pathogen's lipooligosaccharides is a well-established mechanism for Campylobacter jejuni-associated GBS. New triggers of the axonal variants of GBS (axonal GBS), such as Zika virus, hepatitis viruses, intravenous administration of ganglioside, vaccination, and surgery, are being identified. However, the pathogenetic mechanisms of axonal GBS related to antecedent bacterial or viral infections other than Campylobacter jejuni remain unknown. Currently, autoantibody classification and serial electrophysiology are cardinal approaches to differentiate axonal GBS from the prototype of GBS, acute inflammatory demyelinating polyneuropathy. Newly developed technologies, including metabolite analysis, peripheral nerve ultrasound, and feature selection via artificial intelligence are facilitating more accurate diagnosis of axonal GBS. Nevertheless, some key issues, such as genetic susceptibilities, remain unanswered and moreover, current therapies bear limitations. Although several therapies have shown considerable benefits to experimental animals, randomized controlled trials are still needed to validate their efficacy.
Collapse
Affiliation(s)
- Pei Shang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Mingqin Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Ying Wang
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiujuan Wu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Jiachun Feng
- Department of Neurology, First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Hong-Liang Zhang
- Department of Life Sciences, National Natural Science Foundation of China, Shuangqing Road 83#, Beijing, 100085, China.
| |
Collapse
|