1
|
Martins AS, Carvalho FA, Nascimento AR, Silva NM, Rebelo TV, Faustino AF, Enguita FJ, Huber RG, Santos NC, Martins IC. Zika virus capsid protein closed structure modulates binding to host lipid systems. Protein Sci 2024; 33:e5142. [PMID: 39194132 DOI: 10.1002/pro.5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
Zika virus (ZIKV), a mosquito-borne Flavivirus of international concern, causes congenital microcephaly in newborns and Guillain-Barré syndrome in adults. ZIKV capsid (C) protein, one of three key structural proteins, is essential for viral assembly and encapsidation. In dengue virus, a closely related flavivirus, the homologous C protein interacts with host lipid systems, namely intracellular lipid droplets, for successful viral replication. Here, we investigate ZIKV C interaction with host lipid systems, showing that it binds host lipid droplets but, contrary to expected, in an unspecific manner. Contrasting with other flaviviruses, ZIKV C also does not bind very-low density-lipoproteins. Comparing with other Flavivirus, capsid proteins show that ZIKV C structure is particularly thermostable and seems to be locked into an auto-inhibitory conformation due to a disordered N-terminal, hence blocking specific interactions and supporting the experimental differences observed. Such distinct structural features must be considered when targeting capsid proteins in drug development.
Collapse
Affiliation(s)
- Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André R Nascimento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nelly M Silva
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa V Rebelo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Boon PLS, Martins AS, Lim XN, Enguita FJ, Santos NC, Bond PJ, Wan Y, Martins IC, Huber RG. Dengue Virus Capsid Protein Facilitates Genome Compaction and Packaging. Int J Mol Sci 2023; 24:ijms24098158. [PMID: 37175867 PMCID: PMC10179140 DOI: 10.3390/ijms24098158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.
Collapse
Affiliation(s)
- Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Xin Ni Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| |
Collapse
|
3
|
Abyzov A, Mandelkow E, Zweckstetter M, Rezaei-Ghaleh N. Fast Motions Dominate Dynamics of Intrinsically Disordered Tau Protein at High Temperatures. Chemistry 2023; 29:e202203493. [PMID: 36579699 DOI: 10.1002/chem.202203493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Reorientational dynamics of intrinsically disordered proteins (IDPs) contain multiple motions often clustered around three motional modes: ultrafast librational motions of amide groups, fast local backbone conformational fluctuations and slow chain segmental motions. This dynamic picture is mainly based on 15 N NMR relaxation studies of IDPs at relatively low temperatures where the amide-water proton exchange rates are sufficiently small. Less is known, however, about the dynamics of IDPs at more physiological temperatures. Here, we investigate protein dynamics in a 441-residue long IDP, tau protein, in the temperature range from 0-25 °C, using 15 N NMR relaxation rates and spectral density analysis. While at these temperatures relaxation rates are still better described in terms of amide group librational motions, local backbone dynamics and chain segmental motions, the temperature-dependent trend of spectral densities suggests that the timescales of fast backbone conformational fluctuations and slower chain segmental motions might become inseparable at higher temperatures. Our data demonstrate the remarkable dynamic plasticity of this prototypical IDP and highlight the need for dynamic studies of IDPs at multiple temperatures.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, D-53127, Bonn, Germany
- Research Center CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Markus Zweckstetter
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, D-37075, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, D-52428, Jülich, Germany
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077, Göttingen, Germany
| |
Collapse
|
4
|
Computational Prediction of Intrinsically Disordered Proteins Based on Protein Sequences and Convolutional Neural Networks. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2021:4455604. [PMID: 34992646 PMCID: PMC8727116 DOI: 10.1155/2021/4455604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess at least one region that lacks a single stable structure in vivo, which makes them play an important role in a variety of biological functions. We propose a prediction method for IDPs based on convolutional neural networks (CNNs) and feature selection. The combination of sequence and evolutionary properties is used to describe the differences between disordered and ordered regions. Especially, to highlight the correlation between the target residue and adjacent residues, multiple windows are selected to preprocess the protein sequence through the selected properties. The shorter windows reflect the characteristics of the central residue, and the longer windows reflect the characteristics of the surroundings around the central residue. Moreover, to highlight the specificity of sequence and evolutionary properties, they are preprocessed, respectively. After that, the preprocessed properties are combined into feature matrices as the input of the constructed CNN. Our method is training as well as testing based on the DisProt database. The simulation results show that the proposed method can predict IDPs effectively, and the performance is competitive in comparison with IsUnstruct and ESpritz.
Collapse
|
5
|
Zhu S, Kachooei E, Harmer JR, Brown LJ, Separovic F, Sani MA. TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments. Biophys J 2021; 120:4501-4511. [PMID: 34480924 DOI: 10.1016/j.bpj.2021.08.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
The benefit of combining in-cell solid-state dynamic nuclear polarization (DNP) NMR and cryogenic temperatures is providing sufficient signal/noise and preservation of bacterial integrity via cryoprotection to enable in situ biophysical studies of antimicrobial peptides. The radical source required for DNP was delivered into cells by adding a nitroxide-tagged peptide based on the antimicrobial peptide maculatin 1.1 (Mac1). In this study, the structure, localization, and signal enhancement properties of a single (T-MacW) and double (T-T-MacW) TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin-labeled Mac1 analogs were determined within micelles or lipid vesicles. The solution NMR and circular dichroism results showed that the spin-labeled peptides adopted helical structures in contact with micelles. The peptides behaved as an isolated radical source in the presence of multilamellar vesicles, and the electron paramagnetic resonance (EPR) electron-electron distance for the doubly spin-labeled peptide was ∼1 nm. The strongest paramagnetic relaxation enhancement (PRE) was observed for the lipid NMR signals near the glycerol-carbonyl backbone and was stronger for the doubly spin-labeled peptide. Molecular dynamics simulation of the T-T-MacW radical source in phospholipid bilayers supported the EPR and PRE observations while providing further structural insights. Overall, the T-T-MacW peptide achieved better 13C and 15N signal NMR enhancements and 1H spin-lattice T1 relaxation than T-MacW.
Collapse
Affiliation(s)
- Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Jia Bu Y, Nitz M. Incorporation of TePhe into Expressed Proteins is Minimally Perturbing. Chembiochem 2021; 22:2449-2456. [PMID: 34003548 DOI: 10.1002/cbic.202100160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/14/2021] [Indexed: 01/24/2023]
Abstract
Tellurium is a versatile heavy chalcogen with numerous applications in chemical biology, providing valuable probes in mass cytometry, fluorescence imaging and structural biology. L-Tellurienylalanine (TePhe) is an analogue of the proteinogenic amino acid L-phenylalanine (Phe) in which the phenyl side chain has been replaced by a 5-membered tellurophene moiety. High incorporation level of TePhe in expressed proteins at defined sites is expected to facilitate studies in proteomics, protein NMR spectroscopy, and structure elucidation. As a model we chose immunoglobulin-binding Protein G, B1 domain (GB1) to validate TePhe as a suitable structural analogue for Phe. We demonstrate that approximately 1 in 2 of all Phe sites within GB1 can be substituted with TePhe through expression in standard non-Phe-auxotrophic E. coli in Phe-deficient media containing glyphosate, an inhibitor of aromatic amino acid biosynthesis. The TePhe content of the GB1 sample can be further increased to 85 % through HPLC. Using NMR and CD spectroscopy, we confirm that the Phe-to-TePhe substitution has negligible impact on the global structure and stability of GB1.
Collapse
Affiliation(s)
- Yong Jia Bu
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
7
|
Launay H, Shao H, Bornet O, Cantrelle FX, Lebrun R, Receveur-Brechot V, Gontero B. Flexibility of Oxidized and Reduced States of the Chloroplast Regulatory Protein CP12 in Isolation and in Cell Extracts. Biomolecules 2021; 11:biom11050701. [PMID: 34066751 PMCID: PMC8151241 DOI: 10.3390/biom11050701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
In the chloroplast, Calvin–Benson–Bassham enzymes are active in the reducing environment created in the light by electrons from the photosystems. In the dark, these enzymes are inhibited, mainly caused by oxidation of key regulatory cysteine residues. CP12 is a small protein that plays a role in this regulation with four cysteine residues that undergo a redox transition. Using amide-proton exchange with solvent, measured by nuclear magnetic resonance (NMR) and mass-spectrometry, we confirmed that reduced CP12 is intrinsically disordered. Using real-time NMR, we showed that the oxidation of the two disulfide bridges is simultaneous. In oxidized CP12, the C23–C31 pair is in a region that undergoes a conformational exchange in the NMR-intermediate timescale. The C66–C75 pair is in the C-terminus that folds into a stable helical turn. We confirmed that these structural states exist in a physiologically relevant environment: a cell extract from Chlamydomonas reinhardtii. Consistent with these structural equilibria, the reduction is slower for the C66–C75 pair than for the C23–C31 pair. The redox mid-potentials for the two cysteine pairs differ and are similar to those found for glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase, consistent with the regulatory role of CP12.
Collapse
Affiliation(s)
- Helene Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
- Correspondence: (H.L.); (B.G.)
| | - Hui Shao
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
| | - Olivier Bornet
- NMR Platform, Institut de Microbiologie de la Méditerranée, Aix Marseille Univ, F-13009 Marseille, France;
| | - Francois-Xavier Cantrelle
- CNRS, ERL9002, Integrative Structural Biology, Univ. Lille, F-59658 Lille, France;
- U1167, INSERM, CHU Lille, Institut Pasteur de Lille, F-59019 Lille, France
| | - Regine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM FR 3479, 31 Chemin Joseph Aiguier, F-13009 Marseille, France;
| | | | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR7281, F-13402 Marseille, France; (H.S.); (V.R.-B.)
- Correspondence: (H.L.); (B.G.)
| |
Collapse
|
8
|
Martins IC, Santos NC. Intrinsically disordered protein domains in flavivirus infection. Arch Biochem Biophys 2020; 683:108298. [PMID: 32045581 DOI: 10.1016/j.abb.2020.108298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered protein regions are at the core of biological processes and involved in key protein-ligand interactions. The Flavivirus proteins, of viruses of great biomedical importance such as Zika and dengue viruses, exemplify this. Several proteins of these viruses have disordered regions that are of the utmost importance for biological activity. Disordered proteins can adopt several conformations, each able to interact with and/or bind to different ligands. In fact, such interactions can help stabilize a particular fold. Moreover, by being promiscuous in the number of target molecules they can bind to, these protein regions increase the number of functions that their small proteome (10 proteins) can achieve. A folding energy waterfall better describes the protein folding landscape of these proteins. A disordered protein can be thought as rolling down the folding energy cascade, in order "to fall, fold and function". This is the case of many viral protein regions, as seen in the flaviviruses proteome. Given their small size, flaviviruses are a good model system for understanding the role of intrinsically disordered protein regions in viral function. Finally, studying these viruses disordered protein regions will certainly contribute to the development of therapeutic approaches against such promising (yet challenging) targets.
Collapse
Affiliation(s)
- Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
9
|
Faustino AF, Martins AS, Karguth N, Artilheiro V, Enguita FJ, Ricardo JC, Santos NC, Martins IC. Structural and Functional Properties of the Capsid Protein of Dengue and Related Flavivirus. Int J Mol Sci 2019; 20:E3870. [PMID: 31398956 PMCID: PMC6720645 DOI: 10.3390/ijms20163870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Collapse
Affiliation(s)
- André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nina Karguth
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Vanessa Artilheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Joana C Ricardo
- Centro de Química-Física Molecular, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|