1
|
Di Gregorio E, Scarciglia A, Amaolo A, Ferrauto G. Mn(iii), Fe(iii) and Zn(ii)-serum albumin as innovative multicolour contrast agents for photoacoustic imaging. NANOSCALE ADVANCES 2024; 6:777-781. [PMID: 38298593 PMCID: PMC10825928 DOI: 10.1039/d3na00843f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Here we propose innovative photoacoustic imaging (PAI) contrast agents, based on the loading of Mn(iii)-, Fe(iii)- or Zn(ii)-protoporphyrin IX in serum albumin. These systems show different absorption wavelengths, opening the way to multicolor PA imaging. They were characterized in vitro for assessing stability, biocompatibility, and their optical and contrastographic properties. Finally, a proof of concept in vivo study was carried out in breast cancer bearing mice, to evaluate its effectiveness for cancer imaging.
Collapse
Affiliation(s)
- Enza Di Gregorio
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Angelo Scarciglia
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Alessandro Amaolo
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology, Molecular Imaging Center, University of Torino Via Nizza 42 10126 Torino Italy +39 0116708459
| |
Collapse
|
2
|
Pinto TB, Pinto SMA, Piedade AP, Serpa C. Ultrathin materials for wide bandwidth laser ultrasound generation: titanium dioxide nanoparticle films with adsorbed dye. NANOSCALE ADVANCES 2023; 5:4191-4202. [PMID: 37560435 PMCID: PMC10408605 DOI: 10.1039/d3na00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023]
Abstract
Materials that convert the energy of a laser pulse into heat can generate a photoacoustic wave through thermoelastic expansion with characteristics suitable for improved sensing, imaging, or biological membrane permeation. The present work involves the production and characterization of materials composed of an ultrathin layer of titanium dioxide (<5 μm), where a strong absorber molecule capable of very efficiently converting light into heat (5,10,15,20-tetrakis(4-sulfonylphenyl)porphyrin manganese(iii) acetate) is adsorbed. The influence of the thickness of the TiO2 layer and the duration of the laser pulse on the generation of photoacoustic waves was studied. Strong absorption in a thin layer enables bandwidths of ∼130 MHz at -6 dB with nanosecond pulse laser excitation. Bandwidths of ∼150 MHz at -6 dB were measured with picosecond pulse laser excitation. Absolute pressures reaching 0.9 MPa under very low energy fluences of 10 mJ cm-2 enabled steep stress gradients of 0.19 MPa ns-1. A wide bandwidth is achieved and upper high-frequency limits of ∼170 MHz (at -6 dB) are reached by combining short laser pulses and ultrathin absorbing layers.
Collapse
Affiliation(s)
- Tiago B Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| | - Sara M A Pinto
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| | - Ana P Piedade
- CEMMPRE, Department of Mechanical Engineering, University of Coimbra 3030-788 Coimbra Portugal
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra Portugal
| |
Collapse
|
3
|
Shi L, Jiang Y, Zheng N, Cheng JX, Yang C. High-precision neural stimulation through optoacoustic emitters. NEUROPHOTONICS 2022; 9:032207. [PMID: 35355658 PMCID: PMC8941197 DOI: 10.1117/1.nph.9.3.032207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/25/2022] [Indexed: 05/03/2023]
Abstract
Neuromodulation poses an invaluable role in deciphering neural circuits and exploring clinical treatment of neurological diseases. Optoacoustic neuromodulation is an emerging modality benefiting from the merits of ultrasound with high penetration depth as well as the merits of photons with high spatial precision. We summarize recent development in a variety of optoacoustic platforms for neural modulation, including fiber, film, and nanotransducer-based devices, highlighting the key advantages of each platform. The possible mechanisms and main barriers for optoacoustics as a viable neuromodulation tool are discussed. Future directions in fundamental and translational research are proposed.
Collapse
Affiliation(s)
- Linli Shi
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
| | - Ying Jiang
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
| | - Nan Zheng
- Boston University, Division of Materials Science and Engineering, Boston, Massachusetts, United States
| | - Ji-Xin Cheng
- Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| | - Chen Yang
- Boston University, Department of Chemistry, Boston, Massachusetts, United States
- Boston University, Department of Electrical and Computer Engineering, Boston, Massachusetts, United States
- Address all correspondence to Chen Yang, ; Ji-Xin Cheng,
| |
Collapse
|
4
|
Nanotechnology-Based Strategies to Overcome Current Barriers in Gene Delivery. Int J Mol Sci 2021; 22:ijms22168537. [PMID: 34445243 PMCID: PMC8395193 DOI: 10.3390/ijms22168537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials are currently being developed for the specific cell/tissue/organ delivery of genetic material. Nanomaterials are considered as non-viral vectors for gene therapy use. However, there are several requirements for developing a device small enough to become an efficient gene-delivery tool. Considering that the non-viral vectors tested so far show very low efficiency of gene delivery, there is a need to develop nanotechnology-based strategies to overcome current barriers in gene delivery. Selected nanostructures can incorporate several genetic materials, such as plasmid DNA, mRNA, and siRNA. In the field of nanotechnologies, there are still some limitations yet to be resolved for their use as gene delivery systems, such as potential toxicity and low transfection efficiency. Undeniably, novel properties at the nanoscale are essential to overcome these limitations. In this paper, we will explore the latest advances in nanotechnology in the gene delivery field.
Collapse
|
5
|
Imaging of photoacoustic-mediated permeabilization of giant unilamellar vesicles (GUVs). Sci Rep 2021; 11:2775. [PMID: 33531539 PMCID: PMC7854711 DOI: 10.1038/s41598-021-82140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/13/2021] [Indexed: 01/24/2023] Open
Abstract
Target delivery of large foreign materials to cells requires transient permeabilization of the cell membrane without toxicity. Giant unilamellar vesicles (GUVs) mimic the phospholipid bilayer of the cell membrane and are also useful drug delivery vehicles. Controlled increase of the permeability of GUVs is a delicate balance between sufficient perturbation for the delivery of the GUV contents and damage to the vesicles. Here we show that photoacoustic waves can promote the release of FITC-dextran or GFP from GUVs without damage. Real-time interferometric imaging offers the first movies of photoacoustic wave propagation and interaction with GUVs. The photoacoustic waves are seen as mostly compressive half-cycle pulses with peak pressures of ~ 1 MPa and spatial extent FWHM ~ 36 µm. At a repetition rate of 10 Hz, they enable the release of 25% of the FITC-dextran content of GUVs in 15 min. Such photoacoustic waves may enable non-invasive targeted release of GUVs and cell transfection over large volumes of tissues in just a few minutes.
Collapse
|
6
|
Hosseinpour S, Walsh LJ. Laser-assisted nucleic acid delivery: A systematic review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000295. [PMID: 32931155 DOI: 10.1002/jbio.202000295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy has become an effective treatment modality for some conditions. Laser light may augment or enhance gene therapy through photomechanical, photothermal, and photochemical. This review examined the evidence base for laser therapy to enhance nucleic acid transfection in mammalian cells. An electronic search of MEDLINE, Scopus, EMBASE, Web of Science, and Google Scholar was performed, covering all available years. The preferred reporting items for systematic reviews and meta-analyses guideline for systematic reviews was used for designing the study and analyzing the results. In total, 49 studies of laser irradiation for nucleic acid delivery were included. Key approaches were optoporation, photomechanical gene transfection, and photochemical internalization. Optoporation is better suited to cells in culture, photomechanical and photochemical approaches appear well suited to in vivo use. Additional studies explored the impact of photothermal for enhancing gene transfection. Each approach has merits and limitations. Augmenting nucleic acid delivery using laser irradiation is a promising method for improving gene therapy. Laser protocols can be non-invasive because of the penetration of desirable wavelengths of light, but it depends on various parameters such as power density, treatment duration, irradiation mode, etc. The current protocols show low efficiency, and there is a need for further work to optimize irradiation parameters.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| | - Laurence J Walsh
- School of Dentistry, Oral Health Centre, The University of Queensland, Brisbane, Australia
| |
Collapse
|
7
|
Silva AD, Henriques CA, Malva DV, Calvete MJF, Pereira MM, Serpa C, Arnaut LG. Photoacoustic generation of intense and broadband ultrasound pulses with functionalized carbon nanotubes. NANOSCALE 2020; 12:20831-20839. [PMID: 33043332 DOI: 10.1039/d0nr04986g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanotubes (CNT) functionalized with siloxane groups were dissolved in polystyrene/tetrahydrofuran to produce thin films that generate broadband and intense ultrasound pulses when excited by pulsed lasers. These films absorb >99% of light in the visible and near-infrared and show no signs of fatigue after thousands of laser pulses. Picosecond laser pulses with fluences of 50 mJ cm-2 generate photoacoustic waves with exceptionally wide bandwidths (170 MHz at -6 dB) and peak pressures >1 MPa several millimeters away from the source. The ability to generate such broadband ultrasound pulses is assigned to the ultrafast dissipation of heat by CNT-siloxanes, and to the formation of very thin photoacoustic sources thanks to the high speed of sound of polystyrene. The wide bandwidths achieved allow for axial resolutions of 8 μm at depths less than 1 mm, similar to the resolution of histology but based on real-time non-invasive methods.
Collapse
Affiliation(s)
- Alexandre D Silva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - César A Henriques
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Daniel V Malva
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mario J F Calvete
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Mariette M Pereira
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Carlos Serpa
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| | - Luis G Arnaut
- CQC, Department of Chemistry, University of Coimbra, R. Larga, 3004-535 Coimbra, Portugal.
| |
Collapse
|