1
|
Zhao Y, Klionsky DJ, Wang X, Huang Q, Deng Z, Xiang J. The Estrogen-Autophagy Axis: Insights into Cytoprotection and Therapeutic Potential in Cancer and Infection. Int J Mol Sci 2024; 25:12576. [PMID: 39684286 DOI: 10.3390/ijms252312576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 12/18/2024] Open
Abstract
Macroautophagy, commonly referred to as autophagy, is an essential cytoprotective mechanism that plays a significant role in cellular homeostasis. It has emerged as a promising target for drug development aimed at treating various cancers and infectious diseases. However, the scientific community has yet to reach a consensus on the most effective approach to manipulating autophagy, with ongoing debates about whether its inhibition or stimulation is preferable for managing these complex conditions. One critical factor contributing to the variability in treatment responses for both cancers and infectious diseases is estrogen, a hormone known for its diverse biological effects. Given the strong correlations observed between estrogen signaling and autophagy, this review seeks to summarize the intricate molecular mechanisms that underlie the dual cytoprotective effects of estrogen signaling in conjunction with autophagy. We highlight recent findings from studies that involve various ligands, disease contexts, and cell types, including immune cells. Furthermore, we discuss several factors that regulate autophagy in the context of estrogen's influence. Ultimately, we propose a hypothetical model to elucidate the regulatory effects of the estrogen-autophagy axis on cell fate. Understanding these interactions is crucial for advancing our knowledge of related diseases and facilitating the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Ying Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Mary Sue Coleman Hall, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216, USA
| | - Xin Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiaoying Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
2
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zheng H, Triplett KD, Prossnitz ER, Hall PR, Daly SM. G protein-coupled estrogen receptor agonist G-1 decreases ADAM10 levels and NLRP3-inflammasome component activation in response to Staphylococcus aureus alpha-hemolysin. Microbiologyopen 2024; 13:e23. [PMID: 38867416 PMCID: PMC11168966 DOI: 10.1002/mbo3.1423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The G protein-coupled estrogen receptor, also known as GPER1 or originally GPR30, is found in various tissues, indicating its diverse functions. It is typically present in immune cells, suggesting its role in regulating immune responses to infectious diseases. Our previous studies have shown that G-1, a selective GPER agonist, can limit the pathogenesis mediated by Staphylococcus aureus alpha-hemolysin (Hla). It aids in clearing bacteria in a mouse skin infection model and restricts the surface display of the Hla receptor, ADAM10 (a disintegrin and metalloprotease 10) in HaCaT keratinocytes. In this report, we delve into the modulation of GPER in human immune cells in relation to the NLRP3 inflammasome. We used macrophage-like differentiated THP-1 cells for our study. We found that treating these cells with G-1 reduces ATP release, decreases the activity of the caspase-1 enzyme, and lessens cell death following Hla intoxication. This is likely due to the reduced levels of ADAM10 and NLRP3 proteins, as well as the decreased display of the ADAM10 receptor in the G-1-treated THP-1 cells. Our studies, along with our previous work, suggest the potential therapeutic use of G-1 in reducing Hla susceptibility in humans. This highlights the importance of GPER in immune regulation and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Huayu Zheng
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Kathleen D. Triplett
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Eric R. Prossnitz
- Department of Internal Medicine, School of Medicine, Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism and University of New Mexico Comprehensive Cancer CenterUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA
| | - Pamela R. Hall
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| | - Seth M. Daly
- Department of Pharmaceutical SciencesUniversity of New Mexico Health Sciences Center, College of PharmacyAlbuquerqueNew MexicoUSA
| |
Collapse
|
4
|
Rikken G, Meesters LD, Jansen PAM, Rodijk-Olthuis D, van Vlijmen-Willems IMJJ, Niehues H, Smits JPH, Oláh P, Homey B, Schalkwijk J, Zeeuwen PLJM, van den Bogaard EH. Novel methodologies for host-microbe interactions and microbiome-targeted therapeutics in 3D organotypic skin models. MICROBIOME 2023; 11:227. [PMID: 37849006 PMCID: PMC10580606 DOI: 10.1186/s40168-023-01668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/08/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Following descriptive studies on skin microbiota in health and disease, mechanistic studies on the interplay between skin and microbes are on the rise, for which experimental models are in great demand. Here, we present a novel methodology for microbial colonization of organotypic skin and analysis thereof. RESULTS An inoculation device ensured a standardized application area on the stratum corneum and a homogenous distribution of bacteria, while preventing infection of the basolateral culture medium even during prolonged culture periods for up to 2 weeks at a specific culture temperature and humidity. Hereby, host-microbe interactions and antibiotic interventions could be studied, revealing diverse host responses to various skin-related bacteria and pathogens. CONCLUSIONS Our methodology is easily transferable to a wide variety of organotypic skin or mucosal models and different microbes at every cell culture facility at low costs. We envision that this study will kick-start skin microbiome studies using human organotypic skin cultures, providing a powerful alternative to experimental animal models in pre-clinical research. Video Abstract.
Collapse
Affiliation(s)
- Gijs Rikken
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Luca D Meesters
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Diana Rodijk-Olthuis
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | | | - Hanna Niehues
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Jos P H Smits
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Oláh
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Joost Schalkwijk
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Patrick L J M Zeeuwen
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center (Radboudumc), Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
6
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
7
|
Lephart ED, Naftolin F. Factors Influencing Skin Aging and the Important Role of Estrogens and Selective Estrogen Receptor Modulators (SERMs). Clin Cosmet Investig Dermatol 2022; 15:1695-1709. [PMID: 36017417 PMCID: PMC9397534 DOI: 10.2147/ccid.s333663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
The narrative for this overview focuses on updating the factors that influence skin aging and the important role estrogens and selective estrogen receptor modulators (SERMs) play in this process (mainly utilizing journal reports and reviews from the last four years). Estrogens have been known and studied for over a century. For many years, it has been recognized that estrogens are important in the maintenance of human skin. Women seek cosmetic and medical treatments to improve dermal health and physical characteristics to enhance their self-perception and inhibit skin aging, particularly in highly visible body areas. The goal: to retain estrogen’s positive benefits while aging and especially at/after menopause where estrogen-deficient skin contributes to the dramatic decline in skin health. In this overview, both background information and recent novel findings are included that cover aging (general mechanisms), skin aging, and factors that influence skin aging (intrinsic, extrinsic, skin microbiome and gut microbiome.) Plus, estrogen’s general role in maintaining skin health is presented through the classical estrogen receptors alpha (α) and beta (β) and non-classical (or non-genomic) estrogen receptor (G protein-coupled seven transmembrane receptor). More importantly, the various benefits of 17β-estradiol in skin health are examined (ie, skin collagen and elastin profiles that follow 17β-estradiol levels during aging and at/after menopause). Finally, a revision of information for estrogenic skin topical applications involving isoflavonoid compounds that act as SERMs, but are classified as endocrine disruptors, and a topical estrogen analog are explored to update the known and unknown characteristics of these treatments. Further study is warranted to understand the biological and molecular mechanisms by which estrogens support and enhance dermal health and wellbeing.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center, Brigham Young University, Provo, UT, USA
| | - Frederick Naftolin
- Department of Research and Development, e-Bio Corporation, Woodbridge, CT, USA
| |
Collapse
|
8
|
Davidson L, Van den Reek JMPA, Van Hunsel F, De Jong EMGJ, Kullberg BJ. Global Risk of Bacterial Skin Infections and Herpesviridae Infections with Ustekinumab, Secukinumab, and Tumour Necrosis Factor-alpha Inhibitors: Spontaneous Reports of Adverse Drug Reactions from the World Health Organization Pharmacovigilance Center. Acta Derm Venereol 2022; 102:adv00648. [PMID: 35088874 PMCID: PMC9558332 DOI: 10.2340/actadv.v102.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic defects in interleukin-12/23/17 immunity are associated with an increased risk of Staphylococcus aureus and herpesvirus skin infections. This study analysed spontaneous safety reports from the WHO Pharmacovigilance Center of bacterial skin or herpesvirus infections associated with secukinumab, ustekinumab and tumour necrosis factor-α inhibitors. Associations found in disproportionality analyses were expressed as reporting odds ratios (ROR). For bacterial skin infections, ustekinumab showed the strongest association (ROR 6.09; 95% confidence interval (95% CI) 5.44-6.81), and, among the tumour necrosis factor-α inhibitors, infliximab showed the strongest association (ROR 4.18; 95% CI 3.97-4.40). Risk was comparable between infliximab and secukinumab (ROR 3.51; 95% CI 3.00-4.09). Secukinumab showed the strongest association with herpes simplex infection (ROR 4.80; 95% CI 3.78-6.10). All biologics were equally associated with herpes zoster. Infliximab was the only biologic associated with cytomegalovirus infection (ROR 5.66; 95% CI 5.08-6.31) and had the strongest association with Epstein-Barr virus infection (ROR 6.90; 95% CI 6.03-7.90). All biologics evaluated were positively associated with bacterial skin infections, herpes simplex, and herpes zoster, compared with all other drugs in the WHO database for which individual case safety reports were collected. The possibility of under-reporting, reporting bias and difference in causality assessment between countries and reporters must be taken into account when interpreting the results of disproportionality analyses.
Collapse
Affiliation(s)
- Linda Davidson
- Department of Internal Medicine and Radboudumc Center for Infectious diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, NL-6525 GA Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
9
|
Castejón P, Cabas I, Gómez V, Chaves-Pozo E, Cerezo-Ortega I, Moriñigo MÁ, Martínez-Manzanares E, Galindo-Villegas J, García-Ayala A. Vaccination of Gilthead Seabream After Continuous Xenoestrogen Oral Exposure Enhances the Gut Endobolome and Immune Status via GPER1. Front Immunol 2021; 12:742827. [PMID: 34721409 PMCID: PMC8551918 DOI: 10.3389/fimmu.2021.742827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
In fish culture settings, the exogenous input of steroids is a matter of concern. Recently, we unveiled that in the gilthead seabream (Sparus aurata), the G protein-coupled estrogen receptor agonist G-1 (G1) and the endocrine disruptor 17α-ethinylestradiol (EE2) are potent modulators in polyreactive antibody production. However, the integral role of the microbiota upon immunity and antibody processing in response to the effect of EE2 remains largely unexplored. Here, juvenile seabreams continuously exposed for 84 days to oral G1 or EE2 mixed in the fish food were intraperitoneally (i.p.) immune primed on day 42 with the model antigen keyhole limpet hemocyanin (KLH). A critical panel of systemic and mucosal immune markers, serum VTG, and humoral, enzymatic, and bacteriolytic activities were recorded and correlated with gut bacterial metagenomic analysis 1 day post-priming (dpp). Besides, at 15 dpp, animals received a boost to investigate the possible generation of specific anti-KLH antibodies at the systemic and mucosal interphases by the end of the trial. On day 43, EE2 but not G1 induced a significant shift in the serum VTG level of naive fish. Simultaneously, significant changes in some immune enzymatic activities in the serum and gut mucus of the EE2-treated group were recorded. In comparison, the vaccine priming immunization resulted in an attenuated profile of most enzymatic activities in the same group. The gut genes qPCR analysis exhibited a related pattern, only emphasized by a significant shift in the EE2 group's il1b expression. The gut bacterial microbiome status underwent 16S rRNA dynamic changes in alpha diversity indices, only with the exposure to oral G1, supporting functional alterations on cellular processes, signaling, and lipid metabolism in the microbiota. By the same token, the immunization elevated the relative abundance of Fusobacteria only in the control group, while this phylum was depleted in both the treated groups. Remarkably, the immunization also promoted changes in the bacterial class Betaproteobacteria and the estrogen-associated genus Novosphingobium. Furthermore, systemic and mucosal KLH-specific immunoglobulin (Ig)M and IgT levels in the fully vaccinated fish showed only slight changes 84 days post-estrogenic oral administration. In summary, our results highlight the intrinsic relationship among estrogens, their associated receptors, and immunization in the ubiquitous fish immune regulation and the subtle but significant crosstalk with the gut endobolome.
Collapse
Affiliation(s)
- Pablo Castejón
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Instituto Murciano de Investigacion Biosanitaria (IMIB), Centro de Investigacion Biomedica en Red Enfermedades Raras (CIBERER), Murcia, Spain
| | - Isabel Cabas
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Instituto Murciano de Investigacion Biosanitaria (IMIB), Centro de Investigacion Biomedica en Red Enfermedades Raras (CIBERER), Murcia, Spain
| | - Victoria Gómez
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Instituto Murciano de Investigacion Biosanitaria (IMIB), Centro de Investigacion Biomedica en Red Enfermedades Raras (CIBERER), Murcia, Spain
| | - Elena Chaves-Pozo
- Aquaculture Department, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Isabel Cerezo-Ortega
- Department of Microbiology, Faculty of Sciences, University of Malaga, Málaga, Spain
| | - Miguel Ángel Moriñigo
- Department of Microbiology, Faculty of Sciences, University of Malaga, Málaga, Spain
| | | | | | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Instituto Murciano de Investigacion Biosanitaria (IMIB), Centro de Investigacion Biomedica en Red Enfermedades Raras (CIBERER), Murcia, Spain
| |
Collapse
|
10
|
Chen G, Zeng H, Li X, Liu J, Li Z, Xu R, Ma Y, Liu C, Xue B. Activation of G protein coupled estrogen receptor prevents chemotherapy-induced intestinal mucositis by inhibiting the DNA damage in crypt cell in an extracellular signal-regulated kinase 1- and 2- dependent manner. Cell Death Dis 2021; 12:1034. [PMID: 34718327 PMCID: PMC8557214 DOI: 10.1038/s41419-021-04325-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced intestinal mucositis (CIM) is a common adverse reaction to antineoplastic treatment with few appropriate, specific interventions. We aimed to identify the role of the G protein coupled estrogen receptor (GPER) in CIM and its mechanism. Adult male C57BL/6 mice were intraperitoneally injected with 5-fluorouracil to establish the CIM model. The selective GPER agonist G-1 significantly inhibited weight loss and histological damage in CIM mice and restored mucosal barrier dysfunction, including improving the expression of ZO-1, increasing the number of goblet cells, and decreasing mucosal permeability. Moreover, G-1 treatment did not alter the antitumor effect of 5-fluorouracil. In the CIM model, G-1 therapy reduced the expression of proapoptotic protein and cyclin D1 and cyclin B1, reversed the changes in the number of TUNEL+ cells, Ki67+ and bromodeoxyuridine+ cells in crypts. The selective GPER antagonist G15 eliminated all of the above effects caused by G-1 on CIM, and application of G15 alone increased the severity of CIM. GPER was predominantly expressed in ileal crypts, and G-1 inhibited the DNA damage induced by 5-fluorouracil in vivo and vitro, as confirmed by the decrease in the number of γH2AX+ cells in the crypts and the comet assay results. Referring to the data from GEO dataset we verified GPER activation restored ERK1/2 activity in CIM and 5-fluorouracil-treated IEC-6 cells. Once the effects of G-1 on ERK1/2 activity were abolished with the ERK1/2 inhibitor PD0325901, the effects of G-1 on DNA damage both in vivo and in vitro were eliminated. Correspondingly, all of the manifestations of G-1 protection against CIM were inhibited by PD0325901, such as body weight and histological changes, the mucosal barrier, the apoptosis and proliferation of crypt cells. In conclusion, GPER activation prevents CIM by inhibiting crypt cell DNA damage in an ERK1/2-dependent manner, suggesting GPER might be a target preventing CIM.
Collapse
Affiliation(s)
- Guanyu Chen
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Honghui Zeng
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyun Li
- The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianbo Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhao Li
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Runze Xu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuntao Ma
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of basic medical science, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Evaluation of serum G protein-coupled estrogen receptor 1 (GPER-1) levels in patients with androgenetic alopecia. Arch Dermatol Res 2021; 314:681-685. [PMID: 34297198 DOI: 10.1007/s00403-021-02269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
The effect of oestrogens in androgenetic alopecia (AGA) pathophysiology has not been clearly understood. However, they are considered to have a place in the AGA pathogenesis as the androgens do. The effects of estrogen occur via the estrogen receptors alpha and beta, and the recently discovered G protein-coupled estrogen receptor 1 (GPER-1). Aim of this study is to examine serum GPER-1 levels of AGA patients and to evaluate the place of them in AGA pathogenesis for the first time through the literature. 40 AGA patients with clinical AGA stage 2-3-4 diagnoses according to the Hamilton-Norwood classification for males, and AGA stage 2 according to Ludwig system for females and with normal serum dihydroepiandrosterone sulfate, estradiol, total testosterone, progesterone, follicle stimulating hormone and luteinizing hormone were included in the study in addition to 40 healthy controls with similar characteristics by means of age and gender. We received the medical history and performed the physical examinations. We measured serum GPER-1 levels. Serum GPER-1 levels of AGA patients and the control group were 30.43 ± 3.83 ng/mL and 14.18 ± 3.61 ng/mL (mean ± SD), respectively. The levels were detected as significantly increased in AGA group compared with the control group (p = 0.007). No serum GPER-1 level differences were found among female and male patients (p = 0.101). Significantly high levels of serum GPER-1 levels in AGA patients without any relationship between gender and GPER-1 Levels compared with healthy controls reminded us that GPER-1 might have a role in AGA pathogenesis independent from the gender.
Collapse
|
12
|
Lephart ED, Naftolin F. Menopause and the Skin: Old Favorites and New Innovations in Cosmeceuticals for Estrogen-Deficient Skin. Dermatol Ther (Heidelb) 2021; 11:53-69. [PMID: 33242128 PMCID: PMC7859014 DOI: 10.1007/s13555-020-00468-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Estrogen is a pivotal signaling molecule; its production is regulated by the expression of the aromatase (CYP19A1) gene from ovarian and peripheral tissue sites, and it is transmitted via estrogen receptors to influence many important biological functions. However, the narrative for this overview focuses on the decline of 17β-estradiol levels from ovarian sites after menopause. This estrogen-deficient condition is associated with a dramatic reduction in skin health and wellness by negatively impacting dermal cellular and homeostatic mechanisms, as well as other important biological functions. The changes include loss of collagen, elastin, fibroblast function, vascularity, and increased matrix metalloproteinase(s) enzymatic activities, resulting in cellular and extracellular degradation that leads to dryness, wrinkles, atrophy, impaired wound healing/barrier function, decreased antioxidant capacity [i.e., defense against reactive oxygen species (ROS) and oxidative stress], decreased attractiveness and psychological health, and increased perception of aging. While topical estrogen may reverse these changes, the effects of today's low-dose systemic hormone treatments are not well established, raising the need for more concentrated local administration of hormones or newer cosmeceutical agents such as selective estrogen receptor modulators (SERMs), including phytoestrogens that have become major active ingredients for skin care products, especially when addressing estrogen-deficient skin. Two example compounds are presented, an analog of resveratrol (i.e., 4'-acetoxy resveratrol) and the isoflavonoid equol, both of which are involved in a variety of biochemical/molecular actions and mechanisms, as demonstrated via in vitro and clinical studies that enhance human dermal health, especially in estrogen-deficient skin.
Collapse
Affiliation(s)
- Edwin D Lephart
- Department of Physiology, Developmental Biology and The Neuroscience Center, College of Life Sciences, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
13
|
Pokhrel S, Triplett KD, Daly SM, Joyner JA, Sharma G, Hathaway HJ, Prossnitz ER, Hall PR. Complement Receptor 3 Contributes to the Sexual Dimorphism in Neutrophil Killing of Staphylococcus aureus. THE JOURNAL OF IMMUNOLOGY 2020; 205:1593-1600. [PMID: 32769122 DOI: 10.4049/jimmunol.2000545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
We previously reported sex differences in innate susceptibility to Staphylococcus aureus skin infection and that bone marrow neutrophils (BMN) from female mice have an enhanced ability to kill S. aureus ex vivo compared with those of male mice. However, the mechanism(s) driving this sex bias in neutrophil killing have not been reported. Given the role of opsonins such as complement, as well as their receptors, in S. aureus recognition and clearance, we investigated their contribution to the enhanced bactericidal capacity of female BMN. We found that levels of C3 in the serum and CR3 (CD11b/CD18) on the surface of BMN were higher in female compared with male mice. Consistent with increased CR3 expression following TNF-α priming, production of reactive oxygen species (ROS), an important bactericidal effector, was also increased in female versus male BMN in response to serum-opsonized S. aureus Furthermore, blocking CD11b reduced both ROS levels and S. aureus killing by murine BMN from both sexes. However, at the same concentration of CD11b blocking Ab, S. aureus killing by female BMN was greatly reduced compared with those from male mice, suggesting CR3-dependent differences in bacterial killing between sexes. Overall, this work highlights the contributions of CR3, C3, and ROS to innate sex bias in the neutrophil response to S. aureus Given that neutrophils are crucial for S. aureus clearance, understanding the mechanism(s) driving the innate sex bias in neutrophil bactericidal capacity could identify novel host factors important for host defense against S. aureus.
Collapse
Affiliation(s)
- Srijana Pokhrel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Kathleen D Triplett
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Seth M Daly
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Jason A Joyner
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131
| | - Geetanjali Sharma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, NM 87131;
| |
Collapse
|
14
|
Vaccination with VLPs Presenting a Linear Neutralizing Domain of S. aureus Hla Elicits Protective Immunity. Toxins (Basel) 2020; 12:toxins12070450. [PMID: 32664481 PMCID: PMC7404987 DOI: 10.3390/toxins12070450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/14/2023] Open
Abstract
The pore-forming cytotoxin α-hemolysin, or Hla, is a critical Staphylococcus aureus virulence factor that promotes infection by causing tissue damage, excessive inflammation, and lysis of both innate and adaptive immune cells, among other cellular targets. In this study, we asked whether a virus-like particle (VLP)-based vaccine targeting Hla could attenuate S. aureus Hla-mediated pathogenesis. VLPs are versatile vaccine platforms that can be used to display target antigens in a multivalent array, typically resulting in the induction of high titer, long-lasting antibody responses. In the present study, we describe the first VLP-based vaccines that target Hla. Vaccination with either of two VLPs displaying a 21 amino-acid linear neutralizing domain (LND) of Hla protected both male and female mice from subcutaneous Hla challenge, evident by reduction in lesion size and neutrophil influx to the site of intoxication. Antibodies elicited by VLP-LND vaccination bound both the LND peptide and the native toxin, effectively neutralizing Hla and preventing toxin-mediated lysis of target cells. We anticipate these novel and promising vaccines being part of a multi-component S. aureus vaccine to reduce severity of S. aureus infection.
Collapse
|
15
|
Turner CT, Zeglinski MR, Richardson KC, Santacruz S, Hiroyasu S, Wang C, Zhao H, Shen Y, Sehmi R, Lima H, Gauvreau GM, Granville DJ. Granzyme B Contributes to Barrier Dysfunction in Oxazolone-Induced Skin Inflammation through E-Cadherin and FLG Cleavage. J Invest Dermatol 2020; 141:36-47. [PMID: 32504614 DOI: 10.1016/j.jid.2020.05.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/24/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin condition. Skin barrier dysfunction is of major importance in AD because it facilitates allergen sensitization and systemic allergic responses. Long regarded as a pro-apoptotic protease, emerging studies indicate granzyme B (GzmB) to have extracellular roles involving the proteolytic cleavage of extracellular matrix, cell adhesion proteins, and basement membrane proteins. Minimally expressed in normal skin, GzmB is elevated in AD and is positively correlated with disease severity and pruritus. We hypothesized that GzmB contributes to AD through extracellular protein cleavage. A causative role for GzmB was assessed in an oxazolone-induced murine model of dermatitis, comparing GzmB-/- mice with wild-type mice, showing significant reductions in inflammation, epidermal thickness, and lesion formation in GzmB-/- mice. Topical administration of a small-molecule GzmB inhibitor reduced disease severity compared with vehicle-treated controls. Mechanistically, GzmB impaired epithelial barrier function through E-cadherin and FLG cleavage. GzmB proteolytic activity contributes to impaired epidermal barrier function and represents a valid therapeutic target for AD.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Katlyn C Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Stephanie Santacruz
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Christine Wang
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Yue Shen
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada
| | - Roma Sehmi
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hermenio Lima
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gail M Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, British Columbia, Canada.
| |
Collapse
|
16
|
Périan S, Vanacker JM. GPER as a Receptor for Endocrine-Disrupting Chemicals (EDCs). Front Endocrinol (Lausanne) 2020; 11:545. [PMID: 32973678 PMCID: PMC7466721 DOI: 10.3389/fendo.2020.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemicals that interfere with endogenous hormonal systems at various levels, resulting in adverse health effects. EDCs belong to diverse chemical families and can accumulate in the environment, diet and body fluids, with different levels of persistence. Their action can be mediated by several receptors, including members of the nuclear receptor family, such as estrogen and androgen receptors. The G protein-coupled estrogen receptor (GPER), a seven-transmembrane domain receptor, has also attracted attention as a potential target of EDCs. This review summarizes our current knowledge concerning GPER as a mediator of EDCs' effects.
Collapse
|
17
|
Tao Y, Yue M, Lv C, Yun X, Qiao S, Fang Y, Wei Z, Xia Y, Dai Y. Pharmacological activation of ERβ by arctigenin maintains the integrity of intestinal epithelial barrier in inflammatory bowel diseases. FASEB J 2019; 34:3069-3090. [PMID: 31908053 DOI: 10.1096/fj.201901638rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022]
Abstract
Intestinal epithelial barrier dysfunction is deeply involved in the pathogenesis of inflammatory bowel diseases (IBD). Arctigenin, the main active constituent in Fructus Arctii (a traditional Chinese medicine), has previously been found to attenuate colitis induced by dextran sulfate sodium (DSS) in mice. The present study investigated whether and how arctigenin protects against the disruption of the intestinal epithelial barrier in IBD. Arctigenin maintained the intestinal epithelial barrier function of mice with DSS- and TNBS-induced colitis. In Caco-2 and HT-29 cells, arctigenin lowered the monolayer permeability, increased TEER, reversed the abnormal expression of tight junction proteins, and restored the altered localization of F-actin induced by TNF-α and IL-1β. The specific antagonist PHTPP or shRNA of ERβ largely weakened the protective effect of arctigenin on the epithelial barrier function of Caco-2 and HT-29 cells. Molecular docking demonstrated that arctigenin had high affinity for ERβ mainly through hydrogen bonds as well as hydrophobic effects, and the protective effect of arctigenin on the intestinal barrier function was largely diminished in ERβ-mutated (ARG346 and/or GLU305) Caco-2 cells. Moreover, arctigenin-blocked TNF-α induced increase of the monolayer permeability in Caco-2 and HT-29 cells and the activation of myosin light chain kinase (MLCK)/myosin light chain (MLC) pathway in an ERβ-dependent manner. ERβ deletion in colons of mice with DSS-induced colitis resulted in a significant attenuation of the protective effect of arctigenin on the barrier integrity and colon inflammation. Arctigenin maintained the integrity of the intestinal epithelial barrier under IBD by upregulating the expression of tight junction proteins through the ERβ-MLCK/MLC pathway.
Collapse
Affiliation(s)
- Yu Tao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengfan Yue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinming Yun
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Simiao Qiao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yufeng Xia
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Barton M, Meyer MR, Prossnitz ER. Nox1 downregulators: A new class of therapeutics. Steroids 2019; 152:108494. [PMID: 31518594 PMCID: PMC6891104 DOI: 10.1016/j.steroids.2019.108494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Chronic non-communicable diseases share the pathomechanism of increased reactive oxygen species (ROS) production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, known as Nox. The recent discovery that expression of Nox1, a Nox isoform that has been implicated in the pathogenesis of cardiovascular and kidney disease and cancer is regulated by the expression and activity of G protein-coupled estrogen receptor (GPER) led to the identification of orally active small-molecule GPER blockers as selective Nox1 downregulators (NDRs). Preclinical studies using NDRs have demonstrated beneficial effects in vascular disease, hypertension, and glomerular renal injury. These findings suggest the therapeutic potential of NDRs, which reduce Nox1 protein levels, not only for cardiovascular disease conditions including arterial hypertension, pulmonary hypertension, heart failure with preserved ejection fraction (HFpEF), and chronic renal disease, but also for other non-communicable diseases, such as cerebrovascular disease and vascular dementia, Alzheimer's disease, autoimmune diseases and cancer, in which elevated Nox1-derived ROS production plays a causal role.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| | - Matthias R Meyer
- Division of Cardiology, Triemli City Hospital, Zürich, Switzerland; Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
19
|
Seiti Yamada Yoshikawa F, Feitosa de Lima J, Notomi Sato M, Álefe Leuzzi Ramos Y, Aoki V, Leao Orfali R. Exploring the Role of Staphylococcus Aureus Toxins in Atopic Dermatitis. Toxins (Basel) 2019; 11:E321. [PMID: 31195639 PMCID: PMC6628437 DOI: 10.3390/toxins11060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense pruritus and xerosis. AD pathogenesis is multifactorial, involving genetic, environmental, and immunological factors, including the participation of Staphylococcus aureus. This bacterium colonizes up to 30-100% of AD skin and its virulence factors are responsible for its pathogenicity and antimicrobial survival. This is a concise review of S. aureus superantigen-activated signaling pathways, highlighting their involvement in AD pathogenesis, with an emphasis on skin barrier disruption, innate and adaptive immunity dysfunction, and microbiome alterations. A better understanding of the combined mechanisms of AD pathogenesis may enhance the development of future targeted therapies for this complex disease.
Collapse
Affiliation(s)
- Fabio Seiti Yamada Yoshikawa
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Josenilson Feitosa de Lima
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Yasmin Álefe Leuzzi Ramos
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Valeria Aoki
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| | - Raquel Leao Orfali
- Laboratory of Dermatology and Immunodeficiencies (LIM-56), Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo-SP 01246-903, Brazil.
| |
Collapse
|