1
|
Baco AR, Ross R, Althaus F, Amon D, Bridges AEH, Brix S, Buhl-Mortensen P, Colaco A, Carreiro-Silva M, Clark MR, Du Preez C, Franken ML, Gianni M, Gonzalez-Mirelis G, Hourigan T, Howell K, Levin LA, Lindsay DJ, Molodtsova TN, Morgan N, Morato T, Mejia-Mercado BE, O’Sullivan D, Pearman T, Price D, Robert K, Robson L, Rowden AA, Taylor J, Taylor M, Victorero L, Watling L, Williams A, Xavier JR, Yesson C. Towards a scientific community consensus on designating Vulnerable Marine Ecosystems from imagery. PeerJ 2023; 11:e16024. [PMID: 37846312 PMCID: PMC10576969 DOI: 10.7717/peerj.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/13/2023] [Indexed: 10/18/2023] Open
Abstract
Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.
Collapse
Affiliation(s)
- Amy R. Baco
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | | | | | - Diva Amon
- SpeSeas, D’Abadie, Trinidad and Tobago
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Amelia E. H. Bridges
- School of Biological and Marine Science, University of Plymouth, Plymouth, United Kingdom
| | - Saskia Brix
- Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Senckenberg Nature Research Society, Hamburg, Germany
| | | | - Ana Colaco
- Okeanos-University of the Azores, Horta, Portugal
| | | | - Malcolm R. Clark
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
| | - Cherisse Du Preez
- Fisheries and Oceans Canada, Sidney, Canada
- University of Victoria, Victoria, British Columbia, Canada
| | | | | | | | - Thomas Hourigan
- National Oceanic & Atmospheric Administration, Washington, D.C., United States
| | - Kerry Howell
- School of Biological and Marine Science, University of Plymouth, Plymouth, United Kingdom
| | - Lisa A. Levin
- Scripps Institution of Oceanography, University of California, San Diego, California, United States
| | - Dhugal J. Lindsay
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | | | - Nicole Morgan
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | - Telmo Morato
- Okeanos-University of the Azores, Horta, Portugal
| | - Beatriz E. Mejia-Mercado
- Earth, Ocean, and Atmospheric Sciences, Florida State University, Tallahassee, FL, United States
| | | | - Tabitha Pearman
- South Atlantic Environmental Research Institute, Stanley, Falkland Islands
| | - David Price
- Okeanos-University of the Azores, Horta, Portugal
- The National Oceanography Centre, Southampton, United Kingdom
- University of Southampton, Southampton, United Kingdom
| | - Katleen Robert
- Fisheries and Marine Institute of Memorial University, St. John’s, Canada
| | - Laura Robson
- Joint Nature Conservation Committee, Peterborough, United Kingdom
| | - Ashley A. Rowden
- National Institute of Water & Atmospheric Research, Wellington, New Zealand
- Victoria University of Wellington, Wellington, New Zealand
| | - James Taylor
- Senckenberg am Meer, German Center for Marine Biodiversity Research (DZMB), Senckenberg Nature Research Society, Hamburg, Germany
| | - Michelle Taylor
- School of Life Sciences, University of Essex, Essex, United Kingdom
| | - Lissette Victorero
- Norwegian Institute for Water Research, Bergen, Norway
- University of Aveiro, CESAM, Aveiro, Portugal
| | - Les Watling
- University of Hawaii at Manoa, Honolulu, United States
| | | | - Joana R. Xavier
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, University of Porto, Matsosinhos, Portugal
| | - Chris Yesson
- Zoological Society of London, London, United Kingdom
| |
Collapse
|
2
|
Barry JP, Litvin SY, DeVogelaere A, Caress DW, Lovera CF, Kahn AS, Burton EJ, King C, Paduan JB, Wheat CG, Girard F, Sudek S, Hartwell AM, Sherman AD, McGill PR, Schnittger A, Voight JR, Martin EJ. Abyssal hydrothermal springs-Cryptic incubators for brooding octopus. SCIENCE ADVANCES 2023; 9:eadg3247. [PMID: 37611094 PMCID: PMC10446498 DOI: 10.1126/sciadv.adg3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
Does warmth from hydrothermal springs play a vital role in the biology and ecology of abyssal animals? Deep off central California, thousands of octopus (Muusoctopus robustus) migrate through cold dark waters to hydrothermal springs near an extinct volcano to mate, nest, and die, forming the largest known aggregation of octopus on Earth. Warmth from the springs plays a key role by raising metabolic rates, speeding embryonic development, and presumably increasing reproductive success; we show that brood times for females are ~1.8 years, far faster than expected for abyssal octopods. Using a high-resolution subsea mapping system, we created landscape-scale maps and image mosaics that reveal 6000 octopus in a 2.5-ha area. Because octopuses die after reproducing, hydrothermal springs indirectly provide a food supplement to the local energy budget. Although localized deep-sea heat sources may be essential to octopuses and other warm-tolerant species, most of these unique and often cryptic habitats remain undiscovered and unexplored.
Collapse
Affiliation(s)
- James P. Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | - Andrew DeVogelaere
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - David W. Caress
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Chris F. Lovera
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Amanda S. Kahn
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Erica J. Burton
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | - Chad King
- Monterey Bay National Marine Sanctuary, National Ocean Service, National Oceanic and Atmospheric Administration, Monterey, CA, USA
| | | | - C. Geoffrey Wheat
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Moss Landing, CA, USA
| | - Fanny Girard
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | - Sebastian Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Paul R. McGill
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| | | | | | - Eric J. Martin
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA
| |
Collapse
|
3
|
Kokarev V, Zalota AK, Zuev A, Tiunov A, Kuznetsov P, Konovalova O, Rimskaya-Korsakova N. Opportunistic consumption of marine pelagic, terrestrial, and chemosynthetic organic matter by macrofauna on the Arctic shelf: a stable isotope approach. PeerJ 2023; 11:e15595. [PMID: 37404477 PMCID: PMC10315133 DOI: 10.7717/peerj.15595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Macrofauna can contribute substantially to the organic matter cycling on the seafloor, yet the role of terrestrial and chemosynthetic organic matter in the diets of microphagous (deposit and suspension) feeders is poorly understood. In the present study, we used stable isotopes of carbon and nitrogen to test the hypothesis that the terrestrial organic matter supplied with river runoff and local chemosynthetic production at methane seeps might be important organic matter sources for macrofaunal consumers on the Laptev Sea shelf. We sampled locations from three habitats with the presumed differences in organic matter supply: "Delta" with terrestrial inputs from the Lena River, "Background" on the northern part of the shelf with pelagic production as the main organic matter source, and "Seep" in the areas with detected methane seepage, where chemosynthetic production might be available. Macrobenthic communities inhabiting each of the habitats were characterized by a distinct isotopic niche, mostly in terms of δ13C values, directly reflecting differences in the origin of organic matter supply, while δ15N values mostly reflected the feeding group (surface deposit/suspension feeders, subsurface deposit feeders, and carnivores). We conclude that both terrestrial and chemosynthetic organic matter sources might be substitutes for pelagic primary production in the benthic food webs on the largely oligotrophic Laptev Sea shelf. Furthermore, species-specific differences in the isotopic niches of species belonging to the same feeding group are discussed, as well as the isotopic niches of the symbiotrophic tubeworm Oligobrachia sp. and the rissoid gastropod Frigidoalvania sp., which are exclusively associated with methane seeps.
Collapse
Affiliation(s)
- Valentin Kokarev
- Laboratory of Ecology of Coastal Bottom Communities, Shirshov Institute of Oceanology RAS, Moscow, Russia
| | - Anna K. Zalota
- Laboratory of Ecology of Coastal Bottom Communities, Shirshov Institute of Oceanology RAS, Moscow, Russia
| | - Andrey Zuev
- Laboratory of Soil Zoology and General Entomology, A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Alexei Tiunov
- Laboratory of Soil Zoology and General Entomology, A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Petr Kuznetsov
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Konovalova
- Centre of Marine Research, Lomonosov Moscow State University, Moscow, Russia
- National Research Tomsk State University, Tomsk, Russia
| | | |
Collapse
|
4
|
Sen A, Tanguy G, Galand PE, Andersen AC, Hourdez S. Bacterial symbiont diversity in Arctic seep Oligobrachia siboglinids. Anim Microbiome 2023; 5:30. [PMID: 37264469 DOI: 10.1186/s42523-023-00251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND High latitude seeps are dominated by Oligobrachia siboglinid worms. Since these worms are often the sole chemosymbiotrophic taxon present (they host chemosynthetic bacteria within the trophosome organ in their trunk region), a key question in the study of high latitude seep ecology has been whether they harbor methanotrophic symbionts. This debate has manifested due to the mismatch between stable carbon isotope signatures of the worms (lower than -50‰ and usually indicative of methanotrophic symbioses) and the lack of molecular or microscopic evidence for methanotrophic symbionts. Two hypotheses have circulated to explain this paradox: (1) the uptake of sediment carbon compounds with depleted δC13 values from the seep environment, and (2) a small, but significant and difficult to detect population of methanotrophic symbionts. We conducted 16S rRNA amplicon sequencing of the V3-V4 regions on two species of northern seep Oligobrachia (Oligobrachia webbi and Oligobrachia sp. CPL-clade), from four different high latitude sites, to investigate the latter hypothesis. We also visually checked the worms' symbiotic bacteria within the symbiont-hosting organ, the trophosome, through transmission electron microscopy. RESULTS The vast majority of the obtained reads corresponded to sulfide-oxidizers and only a very small proportion of the reads pertained to methane-oxidizers, which suggests a lack of methanotrophic symbionts. A number of sulfur oxidizing bacterial strains were recovered from the different worms, however, host individuals tended to possess a single strain, or sometimes two closely-related strains. However, strains did not correspond specifically with either of the two Oligobrachia species we investigated. Water depth could play a role in determining local sediment bacterial communities that were opportunistically taken up by the worms. Bacteria were abundant in non-trophosome (and thereby symbiont-free) tissue and are likely epibiotic or tube bacterial communities. CONCLUSIONS The absence of methanotrophic bacterial sequences in the trophosome of Arctic and north Atlantic seep Oligobrachia likely indicates a lack of methanotrophic symbionts in these worms, which suggests that nutrition is sulfur-based. This is turn implies that sediment carbon uptake is responsible for the low δ13C values of these animals. Furthermore, endosymbiotic partners could be locally determined, and possibly only represent a fraction of all bacterial sequences obtained from tissues of these (and other) species of frenulates.
Collapse
Affiliation(s)
- Arunima Sen
- Department of Arctic Biology, The University Centre in Svalbard (UNIS), Longyearbyen, Norway.
- Faculty of Bioscience and Aquaculture, Nord University, Bodø, Norway.
| | - Gwenn Tanguy
- FR2424 Sorbonne Université-CNRS, Genomer, Station Biologique de Roscoff, Roscoff, France
| | - Pierre E Galand
- UMR8222 Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), CNRS-Sorbonne Université, Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Ann C Andersen
- UMR7144 Laboratoire Adaptation et Diversité en Milieu Marin (AD2M), Sorbonne Université-CNRS, Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Hourdez
- UMR8222 Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), CNRS-Sorbonne Université, Observatoire Océanologique, Banyuls-Sur-Mer, France
| |
Collapse
|
5
|
The phylogeography and ecology of oligobrachia frenulate species suggest a generalist chemosynthesis-based fauna in the arctic. Heliyon 2023; 9:e14232. [PMID: 36967935 PMCID: PMC10034460 DOI: 10.1016/j.heliyon.2023.e14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
We used ancient DNA (aDNA) extraction methods to sequence museum voucher samples of Oligobrachia webbi, a frenulate siboglinid polychaete described from a northern Norwegian fjord over fifty years ago. Our sequencing results indicate a genetic match with the cryptic seep species, Oligobrachia haakonmosbiensis (99% pairwise identity for 574 bp mtCOI fragments). Due to its similarity with O. webbi, the identity of O. haakonmosbiensis has been a matter of debate since its description, which we have now resolved. Furthermore, our results demonstrate that chemosynthesis-based siboglinids, that constitute the bulk of the biomass at Arctic seeps are not seep specialists. Our data on sediment geochemistry and carbon and nitrogen content reveal reduced conditions in fjords/sounds, similar to those at seep systems. Accumulation and decomposition of both terrestrial and marine organic matter results in the buildup of methane and sulfide that apparently can sustain chemosymbiotic fauna. The occurrence of fjords and by extension, highly reducing habitats, could have led to Arctic chemosymbiotic species being relatively generalist with their habitat, as opposed to being seep or vent specialists. Our stable isotope analyses indicate the incorporation of photosynthetically derived carbon in some individuals, which aligns with experiments conducted on frenulates before the discovery of chemosynthesis that demonstrated their ability to take up organic molecules from the surrounding sediment. Since reduced gases in non-seep environments are ultimately sourced from photosynthetic processes, we suggest that the extreme seasonality of the Arctic has resulted in Arctic chemosymbiotic animals seasonally changing their degree of reliance on chemosynthetic partners. Overall, the role of chemosynthesis in Arctic benthos and marine ecosystems and links to photosynthesis may be complex, and more extensive than currently known.
Collapse
|
6
|
Le JT, Girguis PR, Levin LA. Using deep-sea images to examine ecosystem services associated with methane seeps. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105740. [PMID: 36155343 DOI: 10.1016/j.marenvres.2022.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea images are routinely collected during at-sea expeditions and represent a repository of under-utilized knowledge. We leveraged dive videos collected by the remotely-operated vehicle Hercules (deployed from E/V Nautilus, operated by the Ocean Exploration Trust), and adapted biological trait analysis, to develop an approach that characterizes ecosystem services. Specifically, fisheries and climate-regulating services related to carbon are assessed for three southern California methane seeps: Point Dume (∼725 m), Palos Verdes (∼506 m), and Del Mar (∼1023 m). Our results enable qualitative intra-site comparisons that suggest seep activity influences ecosystem services differentially among sites, and site-to-site comparisons that suggest the Del Mar site provides the highest relative contributions to fisheries and carbon services. This study represents a first step towards ecosystem services characterization and quantification using deep-sea images. The results presented herein are foundational, and continued development should help guide research and management priorities by identifying potential sources of ecosystem services.
Collapse
Affiliation(s)
- Jennifer T Le
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093, USA.
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA
| | - Lisa A Levin
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California San Diego, La Jolla, 92093, USA
| |
Collapse
|
7
|
Hall KC, Elcock JN, Hoff GR, Stevenson DE, Summers AP, Donatelli CM. Interspecific differences in the flow regimes and drag of North Pacific skate egg cases. Integr Comp Biol 2022; 62:icac108. [PMID: 35781566 DOI: 10.1093/icb/icac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skates are a diverse group of dorso-ventrally compressed cartilaginous fishes found primarily in high-latitude seas. These slow-growing oviparous fishes deposit their fertilized eggs into cases, which then rest on the seafloor. Developing skates remain in their cases for 1-4 years after they are deposited, meaning the abiotic characteristics of the deposition sites, such as current and substrate type, must interact with the capsule in a way to promote long residency. Egg cases are morphologically variable and can be identified to species. Both the gross morphology and the microstructures of the egg case interact with substrate to determine how well a case stays in place on a current-swept seafloor. Our study investigated the egg case hydrodynamics of eight North Pacific skate species to understand how their morphology affects their ability to stay in place. We used a flume to measure maximum current velocity, or "break-away velocity," each egg case could withstand before being swept off the substrate and a tilt table to measure the coefficient of static friction between each case and the substrate. We also used the programming software R to calculate theoretical drag on the egg cases of each species. For all flume trials, we found the morphology of egg cases and their orientation to flow to be significantly correlated with break-away velocity. In certain species, the morphology of the egg case was correlated with flow rate required to dislodge a case from the substrate in addition to the drag experienced in both the theoretical and flume experiments. These results effectively measure how well the egg cases of different species remain stationary in a similar habitat. Parsing out attachment biases and discrepancies in flow regimes of egg cases allows us to identify where we are likely to find other elusive species nursery sites. These results will aid predictive models for locating new nursery habitats and protective policies for avoiding the destruction of these nursery sites.
Collapse
Affiliation(s)
- Kayla C Hall
- Friday Harbor Labs, University of Washington, 620 University Road, Friday Harbor, WA 98250
- University of Washington, Department of Biology, Life Sciences Building. W Stevens Way NE, Seattle, WA 98195
| | - Jaida N Elcock
- Woods Hole Oceanographic Institution, Department of Biology, Woods Hole Road, MS 31. Clark 223. Woods Hole, MA 02543
- Massachusetts Institute of Technology, Department of Earth and Planetary Science, 77 Massachusetts Ave. 54-918, Cambridge, MA 02139
| | - Gerald R Hoff
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115
| | - Duane E Stevenson
- NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115
| | - Adam P Summers
- Friday Harbor Labs, University of Washington, 620 University Road, Friday Harbor, WA 98250
- University of Washington, Department of Biology, Life Sciences Building. W Stevens Way NE, Seattle, WA 98195
| | - Cassandra M Donatelli
- Friday Harbor Labs, University of Washington, 620 University Road, Friday Harbor, WA 98250
- Fowler School of Engineering, Chapman University, One University Drive, Orange, CA 92866
| |
Collapse
|
8
|
Vedenin AA, Kokarev VN, Chikina MV, Basin AB, Galkin SV, Gebruk AV. Fauna associated with shallow-water methane seeps in the Laptev Sea. PeerJ 2020; 8:e9018. [PMID: 32411521 PMCID: PMC7204824 DOI: 10.7717/peerj.9018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/28/2020] [Indexed: 12/02/2022] Open
Abstract
Background Methane seeps support unique benthic ecosystems in the deep sea existing due to chemosynthetic organic matter. In contrast, in shallow waters there is little or no effect of methane seeps on macrofauna. In the present study we focused on the recently described methane discharge area at the northern Laptev Sea shelf. The aim of this work was to describe the shallow-water methane seep macrofauna and to understand whether there are differences in macrobenthic community structure between the methane seep and background areas. Methods Samples of macrofauna were taken during three expeditions of RV Akademik Mstislav Keldysh in 2015, 2017 and 2018 using 0.1 m2 grabs and the Sigsbee trawl. 21 grabs and two trawls in total were taken at two methane seep sites named Oden and C15, located at depths of 60–70 m. For control, three 0.1 m2 grabs were taken in area without methane seepage. Results The abundance of macrofauna was higher at methane seep stations compared to non-seep sites. Cluster analysis revealed five station groups corresponding to control area, Oden site and C15 site (the latter represented by three groups). Taxa responsible for differences among the station groups were mostly widespread Arctic species that were more abundant in samples from methane seep sites. However, high densities of symbiotrophic siboglinids Oligobrachia sp. were found exclusively at methane seep stations. In addition, several species possibly new to science were found at several methane seep stations, including the gastropod Frigidalvania sp. and the polychaete Ophryotrocha sp. The fauna at control stations was represented only by well-known and widespread Arctic taxa. Higher habitat heterogeneity of the C15 site compared to Oden was indicated by the higher number of station groups revealed by cluster analysis and higher species richness in C15 trawl sample. The development of the described communities at the shallow-water methane seeps can be related to pronounced oligotrophic environment on the northern Siberian shelf.
Collapse
Affiliation(s)
- Andrey A Vedenin
- Laboratory of plankton communities structure and dynamics, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Valentin N Kokarev
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Laboratory of Ecology of Coastal Bottom Communities, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Margarita V Chikina
- Laboratory of Ecology of Coastal Bottom Communities, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Alexander B Basin
- Laboratory of Ecology of Coastal Bottom Communities, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Sergey V Galkin
- Laboratory of Ocean Bottom Fauna, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| | - Andrey V Gebruk
- Laboratory of Ocean Bottom Fauna, P.P. Shirshov Institute of Oceanology, Moscow, Russia
| |
Collapse
|
9
|
Sen A, Didriksen A, Hourdez S, Svenning MM, Rasmussen TL. Frenulate siboglinids at high Arctic methane seeps and insight into high latitude frenulate distribution. Ecol Evol 2020; 10:1339-1351. [PMID: 32076518 PMCID: PMC7029078 DOI: 10.1002/ece3.5988] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 11/08/2022] Open
Abstract
Frenulate species were identified from a high Arctic methane seep area on Vestnesa Ridge, western Svalbard margin (79°N, Fram Strait) based on mitochondrial cytochrome oxidase subunit I (mtCOI). Two species were found: Oligobrachia haakonmosbiensis, and a new, distinct, and undescribed Oligobrachia species. The new species adds to the cryptic Oligobrachia species complex found at high latitude methane seeps in the north Atlantic and the Arctic. However, this species displays a curled tube morphology and light brown coloration that could serve to distinguish it from other members of the complex. A number of single tentacle individuals were recovered which were initially thought to be members of the only unitentaculate genus, Siboglinum. However, sequencing revealed them to be the new species and the single tentacle morphology, in addition to thin, colorless, and ringless tubes indicate that they are juveniles. This is the first known report of juveniles of northern Oligobrachia. Since the juveniles all appeared to be at about the same developmental stage, it is possible that reproduction is either synchronized within the species, or that despite continuous reproduction, settlement, and growth in the sediment only takes place at specific periods. The new find of the well-known species O. haakonmosbiensis extends its range from the Norwegian Sea to high latitudes of the Arctic in the Fram Strait. We suggest bottom currents serve as the main distribution mechanism for high latitude Oligobrachia species and that water depth constitutes a major dispersal barrier. This explains the lack of overlap between the distributions of northern Oligobrachia species despite exposure to similar current regimes. Our results point toward a single speciation event within the Oligobrachia clade, and we suggest that this occurred in the late Neogene, when topographical changes occurred and exchanges between Arctic and North Atlantic water masses and subsequent thermohaline circulation intensified.
Collapse
Affiliation(s)
- Arunima Sen
- CAGE-Centre for Arctic Gas Hydrate, Environment and Climate Department of Geosciences UiT The Arctic University of Norway Tromsø Norway
- Present address: Faculty of Biosciences and Aquaculture Nord University Bodø Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Stéphane Hourdez
- Laboratoire d'écogéochimie des Environnements Benthiques UMR8222 CNRS-Sorbonne Université Banyuls-sur-Mer France
| | - Mette Marianne Svenning
- CAGE-Centre for Arctic Gas Hydrate, Environment and Climate Department of Geosciences UiT The Arctic University of Norway Tromsø Norway
- Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
| | - Tine L Rasmussen
- CAGE-Centre for Arctic Gas Hydrate, Environment and Climate Department of Geosciences UiT The Arctic University of Norway Tromsø Norway
| |
Collapse
|
10
|
Sen A, Chitkara C, Hong WL, Lepland A, Cochrane S, di Primio R, Brunstad H. Image based quantitative comparisons indicate heightened megabenthos diversity and abundance at a site of weak hydrocarbon seepage in the southwestern Barents Sea. PeerJ 2019; 7:e7398. [PMID: 31410307 PMCID: PMC6689391 DOI: 10.7717/peerj.7398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High primary productivity in the midst of high toxicity defines hydrocarbon seeps; this feature usually results in significantly higher biomass, but in lower diversity communities at seeps rather than in the surrounding non-seep benthos. Qualitative estimates indicate that this dichotomy does not necessarily hold true in high latitude regions with respect to megafauna. Instead, high latitude seeps appear to function as local hotspots of both megafaunal diversity and abundance, although quantitative studies do not exist. In this study, we tested this hypothesis quantitatively by comparing georeferenced seafloor mosaics of a seep in the southwestern Barents Sea with the adjacent non-seep seafloor. METHODS Seafloor images of the Svanefjell seep site and the adjacent non seep-influenced background seabed in the southwestern Barents Sea were used to construct georeferenced mosaics. All megafauna were enumerated and mapped on these mosaics and comparisons of the communities at the seep site and the non-seep background site were compared. Sediment push cores were taken in order to assess the sediment geochemical environment. RESULTS Taxonomic richness and abundance were both considerably higher at the seep site than the non-seep location. However, taxa were fewer at the seep site compared to other seeps in the Barents Sea or the Arctic, which is likely due to the Svanefjell seep site exhibiting relatively low seepage rates (and correspondingly less chemosynthesis based primary production). Crusts of seep carbonates account for the higher diversity of the seep site compared to the background site, since most animals were either colonizing crust surfaces or using them for shelter or coverage. Our results indicate that seeps in northern latitudes can enhance local benthic diversity and this effect can take place even with weak seepage. Since crusts of seep carbonates account for most of the aggregating effect of sites experiencing moderate/weak seepage such as the study site, this means that the ability of seep sites to attract benthic species extends well beyond the life cycle of the seep itself, which has important implications for the larger marine ecosystem and its management policies.
Collapse
Affiliation(s)
- Arunima Sen
- UiT The Arctic University of Norway, Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), Tromsø, Norway
- Current affiliation: Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Cheshtaa Chitkara
- UiT The Arctic University of Norway, Centre for Arctic Gas Hydrate, Environment and Climate (CAGE), Tromsø, Norway
| | - Wei-Li Hong
- Geological Survey of Norway (NGU), Trondheim, Norway
| | - Aivo Lepland
- Geological Survey of Norway (NGU), Trondheim, Norway
| | | | | | | |
Collapse
|