1
|
Shin S. Directed colloidal assembly and banding via DC electrokinetics. BIOMICROFLUIDICS 2023; 17:031301. [PMID: 37179591 PMCID: PMC10171889 DOI: 10.1063/5.0133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Manipulating the transport and assembly of colloidal particles to form segregated bands or ordered supracolloidal structures plays an important role in many aspects of science and technology, from understanding the origin of life to synthesizing new materials for next-generation manufacturing, electronics, and therapeutics. One commonly used method to direct colloidal transport and assembly is the application of electric fields, either AC or DC, due to its feasibility. However, as colloidal segregation and assembly both require active redistribution of colloidal particles across multiple length scales, it is not apparent at first sight how a DC electric field, either externally applied or internally induced, can lead to colloidal structuring. In this Perspective, we briefly review and highlight recent advances and standing challenges in colloidal transport and assembly enabled by DC electrokinetics.
Collapse
Affiliation(s)
- Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
2
|
Shim S. Diffusiophoresis, Diffusioosmosis, and Microfluidics: Surface-Flow-Driven Phenomena in the Presence of Flow. Chem Rev 2022; 122:6986-7009. [PMID: 35285634 DOI: 10.1021/acs.chemrev.1c00571] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diffusiophoresis is the spontaneous motion of particles under a concentration gradient of solutes. Since the first recognition by Derjaguin and colleagues in 1947 in the form of capillary osmosis, the phenomenon has been broadly investigated theoretically and experimentally. Early studies were mostly theoretical and were largely interested in surface coating applications, which considered the directional transport of coating particles. In the past decade, advances in microfluidics enabled controlled demonstrations of diffusiophoresis of micro- and nanoparticles. The electrokinetic nature and the typical scales of interest of the phenomenon motivated various experimental studies using simple microfluidic configurations. In this review, I will discuss studies that report diffusiophoresis in microfluidic systems, with the focus on the fundamental aspects of the reported results. In particular, parameters and influences of diffusiophoresis and diffusioosmosis in microfluidic systems and their combinations are highlighted.
Collapse
Affiliation(s)
- Suin Shim
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Lee D, Choi D, Park H, Lee H, Kim SJ. Electroconvective circulating flows by asymmetric Coulombic force distribution in multiscale porous membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Fosso Tene PL, Weltin A, Tritz F, Defeu Soufo HJ, Brandstetter T, Rühe J. Cryogel Monoliths for Analyte Enrichment by Capture and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11041-11048. [PMID: 34506153 DOI: 10.1021/acs.langmuir.1c01638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A platform based on cryogel monoliths in small capillaries, which allows very strong enrichment of an analyte through a capture and release process, is described. For their preparation, a photoreactive copolymer solution containing capture molecules of interest is filled into a capillary, frozen in, and then photochemically transformed into cryogel monoliths through C,H-insertion cross-linking reactions. As a test example, the platform is used for the preconcentration of dopamine from bovine serum albumin and urine samples through capture and release processes. During capture from a large volume and release into a smaller volume, the platform shows recovery rates up to 97% and allows up to a roughly 630-fold enrichment of the concentration of the analyte. The presented platform could be used as a disposable device for the purification and enrichment of a variety of cis-diol-containing samples.
Collapse
Affiliation(s)
- Patrick L Fosso Tene
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Andreas Weltin
- Laboratory for Sensors, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Florian Tritz
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Herve J Defeu Soufo
- Division of Infectious Diseases, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Thomas Brandstetter
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Chemistry & Physics of Interfaces, Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Seo M, Park S, Lee D, Lee H, Kim SJ. Continuous and spontaneous nanoparticle separation by diffusiophoresis. LAB ON A CHIP 2020; 20:4118-4127. [PMID: 32909576 DOI: 10.1039/d0lc00593b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The separation of nanoparticles has drawn critical attention in various microfluidic applications including chemical analysis, diagnostics and environmental monitoring. Thus, a number of nanoparticle separation methods have been extensively proposed. However, most of the conventional methods require complicated structured devices, expensive manufacturing processes, and external power sources. While a spontaneous diffusiophoretic separation device based on an ion exchange mechanism could overcome such drawbacks, the recovery of separated particles and the inevitable development of an acidic environment due to the release of H+ from the cation exchange membrane limit its practical applicability. Therefore, in this work, we present a simple but robust nanoparticle separation method based on spontaneously induced diffusiophoresis, which is operated in a continuous manner to overcome the limitations of conventional methods. First, we confirmed that the particle exclusion distance followed the previously developed scaling law of diffusiophoresis. Consequently, we demonstrated the separation of nanoparticles of 40 nm, 200 nm and 2 μm diameter by utilizing the fact that the exclusion distances of various particles were proportional to their diffusiophoretic mobility. Furthermore, the use of Tris buffer increased the diffusiophoretic migration of nanoparticles due to the enhanced concentration gradient, and enabled the produced solution to be compatible with pH-sensitive bio-samples. Therefore, we expect this continuous and spontaneous diffusiophoretic separation platform to be useful in practical applications for analyzing various nano-meter scale bio-particles.
Collapse
Affiliation(s)
- Myungjin Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sungmin Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dokeun Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea. and Nano Systems Institute, Seoul National University, Seoul 08826, Republic of Korea and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Kowacz M, Pollack GH. Cells in New Light: Ion Concentration, Voltage, and Pressure Gradients across a Hydrogel Membrane. ACS OMEGA 2020; 5:21024-21031. [PMID: 32875239 PMCID: PMC7450609 DOI: 10.1021/acsomega.0c02595] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
The ionic compositions of the intra- and extracellular environments are distinct from one another, with K+ being the main cation in the cytosol and Na+ being the most abundant cation outside of the cell. Specific ions can permeate into and out of the cell at different rates, bringing about uneven distribution of charges and development of negative electric potential inside the cell. Each healthy cell must maintain a specific ion concentration gradient and voltage. To account for these functions, various ionic pumps and channels located within the cell membrane have been invoked. In this work, we use a porous alginate hydrogel as a model gelatinous network representing the plant cell wall or cytoskeleton of the animal cell. We show that the gel barrier is able to maintain a stable separation of ionic solutions of different ionic strengths and chemical compositions without any pumping activity. For the Na+/K+ concentration gradient sustained across the barrier, a negative electric potential develops within the K+-rich side. The situation is reminiscent of that in the cell. Furthermore, also the advective flow of water molecules across the gel barrier is restricted, despite the gel's large pores and the osmotic or hydrostatic pressure gradients across it. This feature has important implications for osmoregulation. We propose a mechanism in which charge separation and electric fields developing across the permselective (gel) membrane prevent ion and bulk fluid flows ordinarily driven by chemical and pressure gradients.
Collapse
|
7
|
Shimokusu TJ, Maybruck VG, Ault JT, Shin S. Colloid Separation by CO 2-Induced Diffusiophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7032-7038. [PMID: 31859510 DOI: 10.1021/acs.langmuir.9b03376] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We present a microfluidic crossflow separation of colloids enabled by the dissolution of CO2 gas in aqueous suspensions. The dissolved CO2 dissociates into H+ and HCO3- ions, which are efficient candidates for electrolytic diffusiophoresis, because of the fast diffusion of protons. By exposing CO2 gas to one side of a microfluidic flow channel, a crossflow gradient can be created, enabling the crossflow diffusiophoresis of suspended particles. We develop a simple two-dimensional model to describe the coupled transport dynamics that is due to the competition of advection and diffusiophoresis. Furthermore, we show that oil nanoemulsions can be effectively separated by utilizing highly charged particles as a carrier vehicle, which is otherwise difficult to achieve. These results demonstrate a portable, versatile method for separating particles in broad applications including oil extraction, drug delivery, and bioseparation.
Collapse
Affiliation(s)
- Trevor J Shimokusu
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Vanessa G Maybruck
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jesse T Ault
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Sangwoo Shin
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|
8
|
Investigation on the Stability of Random Vortices in an Ion Concentration Polarization Layer with Imposed Normal Fluid Flow. MICROMACHINES 2020; 11:mi11050529. [PMID: 32456039 PMCID: PMC7281587 DOI: 10.3390/mi11050529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
While nanoscale electrokinetic studies based on ion concentration polarization has been actively researched recently, random vortices naturally occur, leading to significantly destabilize in laboratory experiments or practical applications. These random vortices agitate the fluid inside microchannels and let the sample molecules seriously leak out preventing them from being controlled. Therefore, several trials have been reported to regulate those uninvited fluctuations by fluid flow tangential to a nanoporous membrane. Indeed, the influence of normal flow should be studied since the mass transport happens in the normal direction to the membrane. Thus, in this work, the nonlinear influence of normal flow to the instability near ion-selective surface was investigated by fully-coupled direct numerical simulation using COMSOL Multiphysics. The investigation on the effect of normal flow revealed that a space charge layer plays a significant role in the onset and growth of instability. The normal flow from the reservoir into the ion-selective surface pushed the space charge layer and decreased the size of vortices. However, there existed a maximum point for the growth of instability. The squeeze of the space charge layer increased the gradient of ion concentration in the layer, which resulted in escalating the velocity of vortices. On the other hand, the normal flow from the ion-selective surface into the reservoir suppressed the instability by spreading ions in the expanding space charge layer, leading to the reduction of ion concentration delayed the onset of instability. These two different mechanisms rendered asymmetric transition of stability as a function of the Peclet number and applied voltage. Therefore, this investigation would help understand the growth of instability and control the inevitable random vortices for the inhibition of fluid-agitation and leakage.
Collapse
|
9
|
Lee D, Kim J, Lee H, Kim SJ. Effect of evaporation through nanoporous medium on diffusiophoresis. MICRO AND NANO SYSTEMS LETTERS 2020. [DOI: 10.1186/s40486-020-00109-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractDiffusiophoresis near a nanoporous medium is the phenomenon that particles were spontaneously moved from low concentration region to high concentration region. However, unidirectional particle motion impeded further application of this phenomenon and lack of studies about the external convective flow effect such as evaporation through a nanoporous medium were reported. In this work, we investigated the evaporation effect through a nanoporous medium on spontaneous particle exclusion zone induced by diffusiophoresis. Consequently, particle’s motion was divided into three regimes: diffusiophoresis regime, transition regime, and evaporation regime depending on the evaporation effect. The experiment in which the time of initiating evaporation effect was controlled by adjusting the region of PDMS on a nanoporous medium showed that evaporation plays a critical role in studying the spontaneous particle exclusion zone. This rigorous analysis would provide a useful strategy for optimizing a spontaneous particle preconcentration/detection platform.
Collapse
|
10
|
Lee D, Kim SJ. Spontaneous diffusiophoretic separation in paper-based microfluidic device. MICRO AND NANO SYSTEMS LETTERS 2020. [DOI: 10.1186/s40486-020-00108-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractMicrofluidic paper-based analytical devices (μPADs) for separating particles have been playing a key role for point-of-care diagnostics in the area of remote settings. While splendid separation methods using μPADs have been explosively developed, they still require external devices inducing external field. In this work, the spontaneous separation method in μPADs was suggested by leveraging convective flow (the imbibition of paper and nanoporous medium) and diffusiophoresis by ion exchange medium. Especially, the paper’s fast imbibition was utilized as driving particles at the first stage, which results in fast overall processing in contrast to the spontaneous separation method of microfluidic chip integrated with only ion exchange medium. Therefore, our novel spontaneous selective preconcentration method based on μPADs would have key potential to be used in portable point-of-care devices in remote settings.
Collapse
|
11
|
Li S, Li A, Hsieh K, Friedrich SM, Wang TH. Electrode-Free Concentration and Recovery of DNA at Physiologically Relevant Ionic Concentrations. Anal Chem 2020; 92:6150-6157. [PMID: 32249576 PMCID: PMC7360426 DOI: 10.1021/acs.analchem.0c00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Advances in microanalytical and microfluidic technologies have enabled rapid and amplification-free detection of DNA with a high signal-to-noise ratio. The low sample volume, however, poses a limit in the DNA detection sensitivity, which can be challenging for analyzing rare DNA in physiological samples. One way to improve the sensitivity is to concentrate the DNA in the sample prior to the analysis. The most common DNA concentration techniques are based on electrokinetics, which require an external electric field and generally become ineffective in high ionic concentration conditions. In this work, we present a facile method termed high-salt molecular rheotaxis (HiSMRT) to concentrate and recover DNA from samples with physiologically relevant ionic concentrations without any external electric field. HiSMRT requires only pressure-driven flow and ion concentration gradient to induce a stable local electric field and achieve DNA concentration, making it impervious to high ionic concentrations. We demonstrate that HiSMRT performs robustly at ionic concentrations equivalent to 2%-20% of the ionic concentration in blood serum. HiSMRT can concentrate DNA by up to 960-fold and recover an average of 96.4% of the DNA fragments from 2.0 to 23 kbp uniformly. The concentration process using HiSMRT takes as little as 7.5 min. Moreover, we show that this technique can be easily integrated to perform DNA concentration, size separation, and single-molecule detection all in one platform. We anticipate that this technique will be applicable to a wide range of biological samples and will help to improve the sensitivity of nucleic acid detection for low-abundance DNA biomarkers.
Collapse
|
12
|
Park JS, Oh J, Kim SJ. Controllable pH Manipulations in Micro/Nanofluidic Device Using Nanoscale Electrokinetics. MICROMACHINES 2020; 11:E400. [PMID: 32290354 PMCID: PMC7231315 DOI: 10.3390/mi11040400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022]
Abstract
Recently introduced nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been suffered from serious pH changes to the sample fluid. A number of studies have focused on the origin of pH changes and strategies for regulating it. Instead of avoiding pH changes, in this work, we tried to demonstrate new ways to utilize this inevitable pH change. First, one can obtain a well-defined pH gradient in proton-received microchannel by applying a fixed electric current through a proton exchange membrane. Furthermore, one can tune the pH gradient on demand by adjusting the proton mass transportation (i.e., adjusting electric current). Secondly, we demonstrated that the occurrence of ICP can be examined by sensing a surrounding pH of electrolyte solution. When pH > threshold pH, patterned pH-responsive hydrogel inside a straight microchannel acted as a nanojunction to block the microchannel, while it did as a microjunction when pH < threshold pH. In case of forming a nanojunction, electrical current significantly dropped compared to the case of a microjunction. The strategies that presented in this work would be a basis for useful engineering applications such as a localized pH stimulation to biomolecules using tunable pH gradient generation and portable pH sensor with pH-sensitive hydrogel.
Collapse
Affiliation(s)
- Jae Suk Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea
| | - Jeewhan Oh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Korea
- Nano Systems Institute, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
13
|
Choi J, Baek S, Kim HC, Chae JH, Koh Y, Seo SW, Lee H, Kim SJ. Nanoelectrokinetic Selective Preconcentration Based on Ion Concentration Polarization. BIOCHIP JOURNAL 2020. [DOI: 10.1007/s13206-020-4109-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Choi J, Lee H, Kim SJ. Hierarchical micro/nanoporous ion-exchangeable sponge. LAB ON A CHIP 2020; 20:505-513. [PMID: 31829365 DOI: 10.1039/c9lc00919a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the versatile properties of a sponge, we propose an ion-exchangeable sponge composed of hierarchical micropores and nanopores for water treatment. Sodium ions in brackish water (10-300 mM) absorbed in the sponge were exchanged for hydrogen ions in a short incubation time and the desalted water was released by squeezing the sponge with a single hand grip. This simple desalination process was attributed to the multi-scale porous structures in the sponge. A number of nanoporous thin films were formed like bubbles surrounded by the closed backbone of the microporous sponge. The hierarchical micro/nanopores maximized the contact area of the ion-exchanging surface with the saline solution so that scaled-up desalination was achieved. Furthermore, the growth of wheat shoots in the desalted water was demonstrated in vivo after using this micro/nanofluidic based water-treatment with the sponges. Wheat shoots grown in NaHCO3/Na2CO3 solutions treated by the sponges were 110 to 226.45% longer than those grown in the original salty water. This implies that the ion-exchangeable sponge could serve as an appropriate technology for the treatment of ground water affected by acid rain and weathered alkaline rocks.
Collapse
Affiliation(s)
- Jihye Choi
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea. and Inter-University Semiconductor Research Center, Seoul National University, Seoul, South Korea and Nano Systems Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Lee S, Park S, Kim W, Moon S, Kim HY, Lee H, Kim SJ. Nanoelectrokinetic bufferchannel-less radial preconcentrator and online extractor by tunable ion depletion layer. BIOMICROFLUIDICS 2019; 13:034113. [PMID: 31186822 PMCID: PMC6542650 DOI: 10.1063/1.5092789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/14/2019] [Indexed: 05/27/2023]
Abstract
Among various preconcentration strategies using nanofluidic platforms, a nanoscale electrokinetic phenomenon called ion concentration polarization (ICP) has been extensively utilized due to several advantages such as high preconcentration factor and no need of complex buffer exchange process. However, conventional ICP preconcentrator had difficulties in the recovery of preconcentrated sample and complicated buffer channels. To overcome these, bufferchannel-less radial micro/nanofluidic preconcentrator was developed in this work. Radially arranged microchannel can maximize the micro/nano membrane interface so that the samples were preconcentrated from each microchannel. All of preconcentrated plugs moved toward the center pipette tip and can be easily collected by just pulling out the tip installed at the center reservoir. For a simple and cost-effective fabrication, a commercial printer was used to print the nanoporous membrane as "Nafion-junction device." Various analytes such as polystyrene particle, fluorescent dye, and dsDNA were preconcentrated and extracted with the recovery ratio of 85.5%, 79.0%, and 51.3%, respectively. Furthermore, we used a super inkjet printer to print the silver electrode instead of nanoporous membrane to preconcentrate either type of charged analytes as "printed-electrode device." A Faradaic reaction was used as the main mechanism, and we successfully demonstrated the preconcentration of either negatively or positively charged analytes. The presented bufferchannel-less radial preconcentrator would be utilized as a practical and handy platform for analyzing low-abundant molecules.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | - Sungmin Park
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, South Korea
| | | | | | | | - Hyomin Lee
- Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, South Korea
| | - Sung Jae Kim
- Authors to whom correspondence should be addressed: and
| |
Collapse
|