1
|
Brown LM, Ekert PG, Fleuren EDG. Biological and clinical implications of FGFR aberrations in paediatric and young adult cancers. Oncogene 2023:10.1038/s41388-023-02705-7. [PMID: 37130917 DOI: 10.1038/s41388-023-02705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.
Collapse
Affiliation(s)
- Lauren M Brown
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul G Ekert
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia.
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
| | - Emmy D G Fleuren
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Abd El Monem M, El Ashry R, Bassiouny MR, Aref S, Abd El Mabood S. The prognostic significance of cytokine receptor-like factor 2 expression and <i>JAK2</i> mutation in pediatric B-cell acute lymphoblastic leukemia: A prospective cohort study. PEDIATRIC HEMATOLOGY/ONCOLOGY AND IMMUNOPATHOLOGY 2023; 22:40-45. [DOI: 10.24287/1726-1708-2023-22-1-40-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Philadelphia (Ph)-like B-cell acute lymphoblastic leukemia (B-ALL) is defined by a gene expression profile similar to Phpositive B-ALL and shows a large number of genetic alterations in the cytokine receptor and kinasesignaling pathway genes that contribute to its aggressive phenotype and frequent disease recurrence – the main cause of death in affected children. Here, we aimed to correlate CRLF2 expression and JAK2 mutations in B-ALL patients with other prognostic factors and the patients’ outcomes as well as to evaluate their prognostic significance. The study was approved by the local institutional review board and written consents were obtained from a parent of each child before their enrolment. We included 54 newly diagnosed B-ALL pediatric patients (median age: 9.0 (2.0–18.0)) who were stratified either into a standard-risk (SR) or high-risk (HR) group and treated according to the modified BerlinFrankfurt-Münster 90 protocol (ALL-BFM 90). Fresh bone marrow samples were used to determine CRLF2 expression as well as to search for the JAK2 V617F mutation. Normal CRLF2 expression was reported in the SR patients much more often than in the HR group, while its overexpression was more common in the HR patients than in the SR ones (22 vs 6 and 18 vs 8, respectively, p < 0.001). CRLF2 was also more often overexpressed in the MRD-positive cases than in the negative ones (17 vs 9, p < 0.001), while normal CRLF2 expression was more common in the MRD-negative patients compared to the MRD-positive ones (24 vs 4, p < 0.001) which supports the unfavorable prognostic value of CRLF2 in relation to MRD positivity at the end of the induction treatment. JAK2 mutation was detected only in 2 patients belonging to the CRLF2 overexpression group which made the assessment of the prognostic significance of this mutation impossible. Notably, none of the patients with normal CRLF2 expression ended up relapsing while 4 patients with overexpressed CRLF2 developed a relapse (p = 0.031). The study subjects were followed up for up to 24 months, and we did not find CRLF2 overexpression to negatively influence overall survival, however, it did have an adverse effect on relapse-free survival. In summary, CRLF2 overexpression was found to be an unfavorable prognostic factor in childhood ALL as it was expressed more in high-risk patients and in those with poor treatment response. The analysis of CRLF2 expression in B-ALL pediatric patients may help in risk stratification and can potentially offer new treatment options based on novel CRLF2 inhibitors.
Collapse
|
3
|
Small RNA-Seq Reveals Similar miRNA Transcriptome in Children and Young Adults with T-ALL and Indicates miR-143-3p as Novel Candidate Tumor Suppressor in This Leukemia. Int J Mol Sci 2022; 23:ijms231710117. [PMID: 36077521 PMCID: PMC9456032 DOI: 10.3390/ijms231710117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to identify miRNAs and pathways specifically deregulated in adolescent and young adult (AYA) T-ALL patients. Small RNA-seq showed no major differences between AYA and pediatric T-ALL, but it revealed downregulation of miR-143-3p in T-ALL patients. Prediction algorithms identified several known and putative oncogenes targeted by this miRNA, including KRAS, FGF1, and FGF9. Pathway analysis indicated signaling pathways related to cell growth and proliferation, including FGFR signaling and PI3K-AKT signaling, with the majority of genes overrepresented in these pathways being predicted targets of hsa-miR-143-3p. By luciferase reporter assays, we validated direct interactions of this miRNA with KRAS, FGF1 and FGF9. In cell proliferation assays, we showed reduction of cell growth upon miR-143-3p overexpression in two T-ALL cell lines. Our study is the first description of the miRNA transcriptome in AYA T-ALL patients and the first report on tumor suppressor potential of miR-143-3p in T-ALL. Downregulation of this miRNA in T-ALL patients might contribute to enhanced growth and viability of leukemic cells. We also discuss the potential role of miR-143-3p in FGFR signaling. Although this requires more extensive validation, it might be an interesting direction, since FGFR inhibition proved promising in preclinical studies in various cancers.
Collapse
|
4
|
Fioretti T, Cevenini A, Zanobio M, Raia M, Sarnataro D, Cattaneo F, Ammendola R, Esposito G. Nuclear FGFR2 Interacts with the MLL-AF4 Oncogenic Chimera and Positively Regulates HOXA9 Gene Expression in t(4;11) Leukemia Cells. Int J Mol Sci 2021; 22:ijms22094623. [PMID: 33924850 PMCID: PMC8124917 DOI: 10.3390/ijms22094623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
The chromosomal translocation t(4;11) marks an infant acute lymphoblastic leukemia associated with dismal prognosis. This rearrangement leads to the synthesis of the MLL-AF4 chimera, which exerts its oncogenic activity by upregulating transcription of genes involved in hematopoietic differentiation. Crucial for chimera’s aberrant activity is the recruitment of the AF4/ENL/P-TEFb protein complex. Interestingly, a molecular interactor of AF4 is fibroblast growth factor receptor 2 (FGFR2). We herein analyze the role of FGFR2 in the context of leukemia using t(4;11) leukemia cell lines. We revealed the interaction between MLL-AF4 and FGFR2 by immunoprecipitation, western blot, and immunofluorescence experiments; we also tested the effects of FGFR2 knockdown, FGFR2 inhibition, and FGFR2 stimulation on the expression of the main MLL-AF4 target genes, i.e., HOXA9 and MEIS1. Our results show that FGFR2 and MLL-AF4 interact in the nucleus of leukemia cells and that FGFR2 knockdown, which is associated with decreased expression of HOXA9 and MEIS1, impairs the binding of MLL-AF4 to the HOXA9 promoter. We also show that stimulation of leukemia cells with FGF2 increases nuclear level of FGFR2 in its phosphorylated form, as well as HOXA9 and MEIS1 expression. In contrast, preincubation with the ATP-mimetic inhibitor PD173074, before FGF2 stimulation, reduced FGFR2 nuclear amount and HOXA9 and MEIS1 transcript level, thereby indicating that MLL-AF4 aberrant activity depends on the nuclear availability of FGFR2. Overall, our study identifies FGFR2 as a new and promising therapeutic target in t(4;11) leukemia.
Collapse
Affiliation(s)
- Tiziana Fioretti
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Armando Cevenini
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Mariateresa Zanobio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Maddalena Raia
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
| | - Daniela Sarnataro
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
| | - Gabriella Esposito
- CEINGE Advanced Biotechnologies s.c. a r.l., via G. Salvatore, 486, 80145 Naples, Italy; (T.F.); (A.C.); (M.R.); (D.S.)
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini, 5, 80131 Naples, Italy; (M.Z.); (F.C.); (R.A.)
- Correspondence: ; Tel.: +30-0817463146
| |
Collapse
|
5
|
Activation of Serum/Glucocorticoid Regulated Kinase 1/Nuclear Factor-κB Pathway Are Correlated with Low Sensitivity to Bortezomib and Ixazomib in Resistant Multiple Myeloma Cells. Biomedicines 2021; 9:biomedicines9010033. [PMID: 33406639 PMCID: PMC7823718 DOI: 10.3390/biomedicines9010033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is an incurable malignancy often associated with primary and acquired resistance to therapeutic agents, such as proteasome inhibitors. However, the mechanisms underlying the proteasome inhibitor resistance are poorly understood. Here, we elucidate the mechanism of primary resistance to bortezomib and ixazomib in the MM cell lines, KMS-20, KMS-26, and KMS-28BM. We find that low bortezomib and ixazomib concentrations induce cell death in KMS-26 and KMS-28BM cells. However, high bortezomib and ixazomib concentrations induce cell death only in KMS-20 cells. During Gene Expression Omnibus analysis, KMS-20 cells exhibit high levels of expression of various genes, including anti-phospho-fibroblast growth factor receptor 1 (FGFR1), chemokine receptor type (CCR2), and serum and glucocorticoid regulated kinase (SGK)1. The SGK1 inhibitor enhances the cytotoxic effects of bortezomib and ixazomib; however, FGFR1 and CCR2 inhibitors do not show such effect in KMS-20 cells. Moreover, SGK1 activation induces the phosphorylation of NF-κB p65, and an NF-κB inhibitor enhances the sensitivity of KMS-20 cells to bortezomib and ixazomib. Additionally, high levels of expression of SGK1 and NF-κB p65 is associated with a low sensitivity to bortezomib and a poor prognosis in MM patients. These results indicate that the activation of the SGK1/NF-κB pathway correlates with a low sensitivity to bortezomib and ixazomib, and a combination of bortezomib and ixazomib with an SGK1 or NF-κB inhibitor may be involved in the treatment of MM via activation of the SGK1/NF-κB pathway.
Collapse
|
6
|
Caballero-Palacios MC, Villegas-Ruiz V, Ramírez-Chiquito JC, Medina-Vera I, Zapata-Tarres M, Mojica-Espinosa R, Cárdenas-Cardos R, Paredes-Aguilera R, Rivera-Luna R, Juárez-Méndez S. v-myb avian myeloblastosis viral oncogene homolog expression is a potential molecular diagnostic marker for B-cell acute lymphoblastic leukemia. Asia Pac J Clin Oncol 2020; 17:60-67. [PMID: 32779388 DOI: 10.1111/ajco.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/28/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND B-cell acute lymphoblastic leukemia (B-ALL) is the most commonly diagnosed childhood malignancy worldwide and is especially common in Mexico. Additionally, the number of cases has increased in recent years. Thus, it is very important to develop molecular strategies to diagnose leukemia. The aim of this study was to investigate MYB expression and to determine its impact on the diagnosis of B-ALL. METHODS We analyzed the B-ALL gene expression profile by microarray data mining. Bioinformatics analysis was performed to identify the genes that are overexpressed in leukemia. We determined that MYB was highly expressed in leukemia. Then, we validated MYB expression in 70 patients with B-ALL and in 16 healthy controls (HCs) using qRT-PCR. The results were statistically analyzed using the Kolmogorov-Smirnov Z test, Mann-Whitney U test, receiver operating characteristic curves, and the Youden index. RESULTS The microarrays showed that MYB was overexpressed in B-ALL patients with a fold change of 57.8728 and a P value of 2.56-195 . MYB expression showed great variability among the patients analyzed. However, compared to the HCs, the B-ALL patients had a P value < .0001, an area under the curve of 0.813, and a Youden index of 1.46, indicating the statistical significance. CONCLUSION MYB expression in B-ALL cells could be a potential molecular marker for childhood leukemia.
Collapse
Affiliation(s)
| | - Vanessa Villegas-Ruiz
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Isabel Medina-Vera
- Research Methodology Department, National Institute of Pediatrics, Mexico City, Mexico
| | - Martha Zapata-Tarres
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Rocio Cárdenas-Cardos
- Department of Pediatric Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | | | - Roberto Rivera-Luna
- Division of Pediatric Hemato/Oncology, National Institute of Pediatrics, Mexico City, Mexico
| | - Sergio Juárez-Méndez
- Experimental Oncology Laboratory, Research Department, National Institute of Pediatrics, Mexico City, Mexico
| |
Collapse
|