1
|
Torrado H, Rios D, Primov K, Burdick DR, Bentlage B, Lemer S, Combosch D. Evolutionary Genomics of Two Co-occurring Congeneric Fore Reef Coral Species on Guam (Mariana Islands). Genome Biol Evol 2025; 17:evae278. [PMID: 39834241 DOI: 10.1093/gbe/evae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Population structure provides essential information for developing meaningful conservation plans. This is especially important in remote places, such as oceanic islands, where limited population sizes and genetic isolation can make populations more susceptible and self-dependent. In this study, we assess and compare the relatedness, population genetics and molecular ecology of two sympatric Acropora species, A. surculosa sensu Randall & Myers (1983) and A. cf. verweyi Veron & Wallace, 1984 around Guam, using genome-wide sequence data (ddRAD). We further contrast our findings with the results of a recent study on back reef A. cf. pulchra (Brook, 1891) to assess the impact of habitat, colony morphology, and phylogenetic relatedness on these basic population genetic characteristics and generate testable hypotheses for future studies. Both target species were found to have small effective population sizes, low levels of genetic diversity, and minimal population structure around Guam. Nonetheless, A. cf. verweyi had significantly higher levels of genetic diversity, some population structure as well as more clones, close relatives and putative loci under selection. Comparisons with A. cf. pulchra indicate a potentially significant impact by habitat on population structure and genetic diversity while colony morphology seems to significantly impact clonality. This study revealed significant differences in the basic population genetic makeup of two sympatric Acropora species on Guam. Our results suggest that colony morphology and habitat/ecology may have a significant impact on the population genetic makeup in reef corals, which could offer valuable insights for future management decisions in the absence of genetic data.
Collapse
Affiliation(s)
- Héctor Torrado
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | - Dareon Rios
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | - Karim Primov
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - David R Burdick
- Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| | | | - Sarah Lemer
- Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
- Museum of Nature Hamburg, Leibniz Institute for the Analysis of Biodiversity Change, 20146 Hamburg, Germany
| | - David Combosch
- Island Evolution Laboratory, Marine Laboratory, University of Guam, Mangilao, GU 96923, USA
| |
Collapse
|
2
|
Petrick B, Reuning L, Auderset A, Pfeiffer M, Auer G, Schwark L. High sea surface temperatures were a prerequisite for the development and expansion of the Great Barrier Reef. SCIENCE ADVANCES 2024; 10:eado2058. [PMID: 39630907 PMCID: PMC11619227 DOI: 10.1126/sciadv.ado2058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
The Great Barrier Reef is the largest reef system in the modern ocean. To date, the influence of temperature on the origin and long-term evolution of the Great Barrier Reef remains enigmatic. Here, we present a 900-thousand year TEX86H-derived temperature proxy record from Ocean Drilling Program Site 820 in the Coral Sea. It demonstrates that the onset of reef growth on the outer shelf was preceded by a rise in summer temperature from ~26° to ~28°C at around 700 thousand years ago (marine isotope stage 17). This approximately 2°C rise in summer sea surface temperatures (SSTs) likely resulted in higher carbonate production rates, which were crucial for the formation of the Great Barrier Reef. Subsequently, reconstructed SSTs remained sufficiently warm for the Great Barrier Reef to thrive and evolve continuously. The evolution of the Great Barrier Reef, therefore, appears to be closely linked to SSTs.
Collapse
Affiliation(s)
- Benjamin Petrick
- Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, Kiel, Germany
| | - Lars Reuning
- Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, Kiel, Germany
| | - Alexandra Auderset
- Department of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Miriam Pfeiffer
- Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, Kiel, Germany
| | - Gerald Auer
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Graz, Austria
| | - Lorenz Schwark
- Christian-Albrechts-Universität zu Kiel, Institute of Geosciences, Kiel, Germany
- WA-OIG, School of Earth and Planetary Sciences, Curtin University, Perth, Australia
| |
Collapse
|
3
|
Furukawa M, Kitanobo S, Ohki S, Teramoto MM, Hanahara N, Morita M. Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Mol Phylogenet Evol 2024; 195:108063. [PMID: 38493988 DOI: 10.1016/j.ympev.2024.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Reef-building corals provide the structural basis for one of Earth's most spectacular and diverse but increasingly threatened ecosystems. The reef-building coral genus Acropora may have undergone substantial speciation during the Pleistocene climate and sea-level changes. Here, we aimed to evaluate the speciation history of four morphologically similar tabular Acropora species (Acropora aff. hyacinthus, A. cf. bifurcata, A. cf. cytherea, and A. cf. subulata) using an integrative approach with morphology, genetic, and reproduction methodology. Extensive morphological analyses showed that these four species are distinct and exhibited high gamete incompatibility, preventing hybridization. Furthermore, population structure and principal component analyses with SNPs (>60,000) indicated that these species were genetically distinct, and the ABBA-BABA test did not support introgression among these species. Many of their coding and noncoding RNA sequences showed high genetic variance at loci with high Fst values along the genome. Comparison of these orthologs with those of other Acropora species suggested that many of these genes are under positive selection, which could be associated with spawning time, gamete, and morphological divergence. Our findings show that the speciation of tabular Acropora occurred without hybridization, and the divergence accompanying the rapid evolution of genes in species-rich Acropora could be associated with speciation.
Collapse
Affiliation(s)
- Mao Furukawa
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Seiya Kitanobo
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan
| | - Shun Ohki
- Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Mariko M Teramoto
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Nozomi Hanahara
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan; Okinawa Churashima Foundation Research Center, 888 Ishikawa, Motobu, Okinawa 905-0206, Japan
| | - Masaya Morita
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko, Motobu, Okinawa 905-0227, Japan.
| |
Collapse
|
4
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Pinsky ML, Clark RD, Bos JT. Coral Reef Population Genomics in an Age of Global Change. Annu Rev Genet 2023; 57:87-115. [PMID: 37384733 DOI: 10.1146/annurev-genet-022123-102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Coral reefs are both exceptionally biodiverse and threatened by climate change and other human activities. Here, we review population genomic processes in coral reef taxa and their importance for understanding responses to global change. Many taxa on coral reefs are characterized by weak genetic drift, extensive gene flow, and strong selection from complex biotic and abiotic environments, which together present a fascinating test of microevolutionary theory. Selection, gene flow, and hybridization have played and will continue to play an important role in the adaptation or extinction of coral reef taxa in the face of rapid environmental change, but research remains exceptionally limited compared to the urgent needs. Critical areas for future investigation include understanding evolutionary potential and the mechanisms of local adaptation, developing historical baselines, and building greater research capacity in the countries where most reef diversity is concentrated.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA;
| | - René D Clark
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| | - Jaelyn T Bos
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Miller MGR, Reimer JD, Sommer B, Cook KM, Pandolfi JM, Obuchi M, Beger M. Temperate functional niche availability not resident-invader competition shapes tropicalisation in reef fishes. Nat Commun 2023; 14:2181. [PMID: 37069145 PMCID: PMC10110547 DOI: 10.1038/s41467-023-37550-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Temperate reefs are at the forefront of warming-induced community alterations resulting from poleward range shifts. This tropicalisation is exemplified and amplified by tropical species' invasions of temperate herbivory functions. However, whether other temperate ecosystem functions are similarly invaded by tropical species, and by what drivers, remains unclear. We examine tropicalisation footprints in nine reef fish functional groups using trait-based analyses and biomass of 550 fish species across tropical to temperate gradients in Japan and Australia. We discover that functional niches in transitional communities are asynchronously invaded by tropical species, but with congruent invasion schedules for functional groups across the two hemispheres. These differences in functional group tropicalisation point to habitat availability as a key determinant of multi-species range shifts, as in the majority of functional groups tropical and temperate species share functional niche space in suitable habitat. Competition among species from different thermal guilds played little part in limiting tropicalisation, rather available functional space occupied by temperate species indicates that tropical species can invade. Characterising these drivers of reef tropicalisation is pivotal to understanding, predicting, and managing marine community transformation.
Collapse
Affiliation(s)
- Mark G R Miller
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - James D Reimer
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | - Brigitte Sommer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Katie M Cook
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- National Institute of Water and Atmosphere Research, Hamilton, New Zealand
| | - John M Pandolfi
- Australian Research Council Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Masami Obuchi
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
- Endo Shell Museum, 1175 Manatsuru, Ashigarashimo-gun, Manazuru-machi, Kanagawa, 259-0201, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- Centre for Biodiversity Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
7
|
Alvarado-Cerón V, Muñiz-Castillo AI, León-Pech MG, Prada C, Arias-González JE. A decade of population genetics studies of scleractinian corals: A systematic review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105781. [PMID: 36371949 DOI: 10.1016/j.marenvres.2022.105781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Coral reefs are the most diverse marine ecosystems. However, coral cover has decreased worldwide due to natural disturbances, climate change, and local anthropogenic drivers. In recent decades, various genetic methods and molecular markers have been developed to assess genetic diversity, structure, and connectivity in different coral species to determine the vulnerability of their populations. This review aims to identify population genetic studies of scleractinian corals in the last decade (2010-2020), and the techniques and molecular markers used. Bibliometric analysis was conducted to identify journals and authors working in this field. We then calculated the number of genetic studies by species and ecoregion based on data obtained from 178 studies found in Scopus and Web of Science. Coral Reefs and Molecular Ecology were the main journals published population genetics studies, and microsatellites are the most widely used molecular markers. The Caribbean, Australian Barrier Reef, and South Kuroshio in Japan are among the ecoregions with the most population genetics data. In contrast, we found limited information about the Coral Triangle, a region with the highest biodiversity and key to coral reef conservation. Notably, only 117 (out of 1500 described) scleractinian coral species have genetic studies. This review emphasizes which coral species have been studied and highlights remaining gaps and locations where such data is critical for coral conservation.
Collapse
Affiliation(s)
- Viridiana Alvarado-Cerón
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - Aarón Israel Muñiz-Castillo
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| | - María Geovana León-Pech
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Carlos Prada
- Department of Biological Science, University of Rhode Island, 120 Flag Road, Kingston, RI, 02881, USA.
| | - Jesús Ernesto Arias-González
- Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del I.P.N., Unidad Mérida. Km. 6 Antigua carretera a Progreso, Cordemex, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
8
|
Tsuchiya K, Zayasu Y, Nakajima Y, Arakaki N, Suzuki G, Satoh N, Shinzato C. Genomic analysis of a reef-building coral, Acropora digitifera, reveals complex population structure and a migration network in the Nansei Islands, Japan. Mol Ecol 2022; 31:5270-5284. [PMID: 36082782 DOI: 10.1111/mec.16665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 12/15/2022]
Abstract
Understanding the structure and connectivity of coral populations is fundamental for developing marine conservation policies, especially in patchy environments such as archipelagos. The Nansei Islands, extending more than 1000 km in southwestern Japan, are characterized by high levels of biodiversity and endemism, supported by coral reefs, which make this region ideal for assessing genetic attributes of coral populations. In this study, we conducted population genomic analyses based on genome-wide, single-nucleotide polymorphisms (SNPs) of Acropora digitifera, a common species in the Nansei Islands. By merging newly obtained genome resequencing data with previously published data, we identified more than 4 million genome-wide SNPs in 303 colonies collected at 22 locations, with sequencing coverage ranging from 3.91× to 27.41×. While population structure analyses revealed genetic similarities between the southernmost and northernmost locations, separated by >1000 km, several subpopulations in intermediate locations suggested limited genetic admixture, indicating conflicting migration tendencies in the Nansei Islands. Although migration networks revealed a general tendency of northward migration along the Kuroshio Current, a substantial amount of southward migration was also detected, indicating important contributions of minor ocean currents to coral larval dispersal. Moreover, heterogeneity in the transition of effective population sizes among locations suggests different histories for individual subpopulations. The unexpected complexity of both past and present population dynamics in the Nansei Islands implies that heterogeneity of ocean currents and local environments, past and present, have influenced the population structure of this species, and similar unexpected population complexities may be expected for other marine species with similar reproductive modes.
Collapse
Affiliation(s)
- Kojin Tsuchiya
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Yuna Zayasu
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Yuichi Nakajima
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Go Suzuki
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
9
|
Heitzman JM, Caputo N, Yang SY, Harvey BP, Agostini S. Recurrent disease outbreak in a warm temperate marginal coral community. MARINE POLLUTION BULLETIN 2022; 182:113954. [PMID: 35914433 DOI: 10.1016/j.marpolbul.2022.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Coral diseases contribute to the rapid degradation of coral reefs on a global scale. Although widespread in tropical and subtropical reefs, disease outbreaks have not been described in warm temperate areas. Here, we report the outbreak of a new coral disease in a warm temperate marginal coral community in Japan. Outbreaks of the disease have been observed during the summer and autumn months since 2014. It affects the coral species Porites heronensis and was tentatively named "White Mat Syndrome" (WMS) as it consists of a white microbial mat dominated by Thiothrix sp., a sulfide oxidizing bacteria. Outbreaks followed high seasonal temperatures and were associated with the macroalga Gelidium elegans, which acts as a pathogen reservoir. With ocean warming and the anticipated increase in novel coral-algae interactions as some coral species shift poleward, WMS and emerging diseases could hinder the role of temperate areas as a future coral refuge.
Collapse
Affiliation(s)
- Joshua M Heitzman
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| | - Nicolè Caputo
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan; Alma Mater Studiorum, University of Bologna, Via S. Alberto 163, 48121 Ravenna, Italy
| | - Sung-Yin Yang
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan; Department of Aquatic Sciences, National Chiayi University A303, Department of Aquatic Sciences, No. 300 Syuefu Rd., Chiayi City 600355, Taiwan
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| |
Collapse
|
10
|
Titus BM, Daly M. Population genomics for symbiotic anthozoans: can reduced representation approaches be used for taxa without reference genomes? Heredity (Edinb) 2022; 128:338-351. [PMID: 35418670 PMCID: PMC9076904 DOI: 10.1038/s41437-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Population genetic studies of symbiotic anthozoans have been historically challenging because their endosymbioses with dinoflagellates have impeded marker development. Genomic approaches like reduced representation sequencing alleviate marker development issues but produce anonymous loci, and without a reference genome, it is unknown which organism is contributing to the observed patterns. Alternative methods such as bait-capture sequencing targeting Ultra-Conserved Elements are now possible but costly. Thus, RADseq remains attractive, but how useful are these methods for symbiotic anthozoan taxa without a reference genome to separate anthozoan from algal sequences? We explore this through a case-study using a double-digest RADseq dataset for the sea anemone Bartholomea annulata. We assembled a holobiont dataset (3854 loci) for 101 individuals, then used a reference genome to create an aposymbiotic dataset (1402 loci). For both datasets, we investigated population structure and used coalescent simulations to estimate demography and population parameters. We demonstrate complete overlap in the spatial patterns of genetic diversity, demographic histories, and population parameter estimates for holobiont and aposymbiotic datasets. We hypothesize that the unique combination of anthozoan biology, diversity of the endosymbionts, and the manner in which assembly programs identify orthologous loci alleviates the need for reference genomes in some circumstances. We explore this hypothesis by assembling an additional 21 datasets using the assembly programs pyRAD and Stacks. We conclude that RADseq methods are more tractable for symbiotic anthozoans without reference genomes than previously realized.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
- Dauphin Island Sea Lab, Dauphin Island, AL, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
11
|
Fifer JE, Yasuda N, Yamakita T, Bove CB, Davies SW. Genetic divergence and range expansion in a western North Pacific coral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152423. [PMID: 34942242 DOI: 10.1016/j.scitotenv.2021.152423] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Coral poleward range expansions have recently been observed in response to warming oceans. Range expansion can lead to reduced genetic diversity and increased frequency of deleterious mutations that were rare in core populations, potentially limiting the ability for adaptation and persistence in novel environments. Successful expansions that overcome these founder effects and colonize new habitat have been attributed to multiple introductions from different sources, hybridization with native populations, or rapid adaptive evolution. Here, we investigate population genomic patterns of the reef-building coral Acropora hyacinthus along a latitudinal cline that includes a well-established range expansion front in Japan using 2b-RAD sequencing. A total of 184 coral samples were collected across seven sites spanning from ~24°N to near its northern range front at ~33°N. We uncover the presence of three cryptic lineages of A. hyacinthus, which occupy discrete reefs within this region. Only one lineage is present along the expansion front and we find evidence for its historical occupation of marginal habitats. Within this lineage we also find evidence of bottleneck pressures associated with expansion events including higher clonality, increased linkage disequilibrium, and lower genetic diversity in range edge populations compared to core populations. Asymmetric migration between populations was also detected with lower migration from edge sites. Lastly, we describe genomic signatures of local adaptation potentially attributed to lower winter temperatures experienced at the more recently expanded northern populations. Together these data illuminate the genomic consequences of range expansion in a coral and highlight how adaptation to discrete environments along expansion fronts may facilitate further range expansion in this temperate coral lineage.
Collapse
Affiliation(s)
- James E Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Nina Yasuda
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan.
| | - Takehisa Yamakita
- Marine Biodiversity and Environmental Assessment Research Center, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushimacho, Yokosuka, Kanagawa 237-0061, Japan
| | - Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
12
|
Juszkiewicz DJ, White NE, Stolarski J, Benzoni F, Arrigoni R, Baird AH, Hoeksema BW, Wilson NG, Bunce M, Richards ZT. Full Title: Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Mol Phylogenet Evol 2022; 172:107469. [DOI: 10.1016/j.ympev.2022.107469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022]
|
13
|
Contingency planning for coral reefs in the Anthropocene; The potential of reef safe havens. Emerg Top Life Sci 2022; 6:107-124. [PMID: 35225326 DOI: 10.1042/etls20210232] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 02/07/2023]
Abstract
Reducing the global reliance on fossil fuels is essential to ensure the long-term survival of coral reefs, but until this happens, alternative tools are required to safeguard their future. One emerging tool is to locate areas where corals are surviving well despite the changing climate. Such locations include refuges, refugia, hotspots of resilience, bright spots, contemporary near-pristine reefs, and hope spots that are collectively named reef 'safe havens' in this mini-review. Safe havens have intrinsic value for reefs through services such as environmental buffering, maintaining near-pristine reef conditions, or housing corals naturally adapted to future environmental conditions. Spatial and temporal variance in physicochemical conditions and exposure to stress however preclude certainty over the ubiquitous long-term capacity of reef safe havens to maintain protective service provision. To effectively integrate reef safe havens into proactive reef management and contingency planning for climate change scenarios, thus requires an understanding of their differences, potential values, and predispositions to stress. To this purpose, I provide a high-level review on the defining characteristics of different coral reef safe havens, how they are being utilised in proactive reef management and what risk and susceptibilities they inherently have. The mini-review concludes with an outline of the potential for reef safe haven habitats to support contingency planning of coral reefs under an uncertain future from intensifying climate change.
Collapse
|
14
|
Agostini S, Harvey BP, Milazzo M, Wada S, Kon K, Floc'h N, Komatsu K, Kuroyama M, Hall-Spencer JM. Simplification, not "tropicalization", of temperate marine ecosystems under ocean warming and acidification. GLOBAL CHANGE BIOLOGY 2021; 27:4771-4784. [PMID: 34268836 DOI: 10.1111/gcb.15749] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/28/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Ocean warming is altering the biogeographical distribution of marine organisms. In the tropics, rising sea surface temperatures are restructuring coral reef communities with sensitive species being lost. At the biogeographical divide between temperate and tropical communities, warming is causing macroalgal forest loss and the spread of tropical corals, fishes and other species, termed "tropicalization". A lack of field research into the combined effects of warming and ocean acidification means there is a gap in our ability to understand and plan for changes in coastal ecosystems. Here, we focus on the tropicalization trajectory of temperate marine ecosystems becoming coral-dominated systems. We conducted field surveys and in situ transplants at natural analogues for present and future conditions under (i) ocean warming and (ii) both ocean warming and acidification at a transition zone between kelp and coral-dominated ecosystems. We show that increased herbivory by warm-water fishes exacerbates kelp forest loss and that ocean acidification negates any benefits of warming for range extending tropical corals growth and physiology at temperate latitudes. Our data show that, as the combined effects of ocean acidification and warming ratchet up, marine coastal ecosystems lose kelp forests but do not gain scleractinian corals. Ocean acidification plus warming leads to overall habitat loss and a shift to simple turf-dominated ecosystems, rather than the complex coral-dominated tropicalized systems often seen with warming alone. Simplification of marine habitats by increased CO2 levels cascades through the ecosystem and could have severe consequences for the provision of goods and services.
Collapse
Affiliation(s)
- Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Marco Milazzo
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa, Rome, Italy
| | - Shigeki Wada
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Koetsu Kon
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Nicolas Floc'h
- Ecole Européenne Supérieure d'Art de Bretagne, Rennes, France
| | - Kosei Komatsu
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Mayumi Kuroyama
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
- Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, UK
| |
Collapse
|
15
|
Yeung YH, Xie JY, Kwok CK, Kei K, Ang P, Chan LL, Dellisanti W, Cheang CC, Chow WK, Qiu JW. Hong Kong's subtropical scleractinian coral communities: Baseline, environmental drivers and management implications. MARINE POLLUTION BULLETIN 2021; 167:112289. [PMID: 33773418 DOI: 10.1016/j.marpolbul.2021.112289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
We surveyed 41 sites to provide an updated baseline of Hong Kong coral communities. Five community types were identified, among them the most common one inhabited oceanic waters and dominated by both massive and upward-plating corals. The 41 sites had 2.1-79% coral cover; among them 21 in the eastern waters had >40% coral cover. Corals in several sites showed signs of external bioerosion or bleaching-induced damage. Sites in the southern waters had low coral cover. Both coral cover and generic richness correlated negatively with several water quality parameters including total inorganic nitrogen concentration and turbidity, indicating the development of Hong Kong's coral communities is constrained by water quality parameters. Management actions are proposed to reduce bioerosion, and to monitor sites affected by bleaching.
Collapse
Affiliation(s)
- Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - James Y Xie
- Agriculture, Fisheries and Conservation Department, Hong Kong, China
| | - Chun Kit Kwok
- Agriculture, Fisheries and Conservation Department, Hong Kong, China
| | - Keith Kei
- College of International Education, Hong Kong Baptist University, Hong Kong, China
| | - Put Ang
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Leo Lai Chan
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Walter Dellisanti
- State Key Laboratory of Marine Pollution and Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Chi Chiu Cheang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Wing Kuen Chow
- Agriculture, Fisheries and Conservation Department, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; HKBU Institute of Research and Continuing Education, Shenzhen, China.
| |
Collapse
|
16
|
Bellworthy J, Fine M. Warming resistant corals from the Gulf of Aqaba live close to their cold-water bleaching threshold. PeerJ 2021; 9:e11100. [PMID: 33828920 PMCID: PMC8005291 DOI: 10.7717/peerj.11100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Global climate change is causing increasing variability and extremes in weather worldwide, a trend set to continue. In recent decades both anomalously warm and cold seawater temperatures have resulted in mass coral bleaching events. Whilst corals' response to elevated temperature has justifiably attracted substantial research interest, coral physiology under cold water stress is relatively unfamiliar. The response to below typical winter water temperature was tested for two common reef building species from the Gulf of Aqaba in an ex situ experiment. Stylophora pistillata and Acropora eurystoma were exposed to 1 or 3 °C below average winter temperature and a suite of physiological parameters were assessed. At 3 °C below winter minima (ca. 18.6 °C), both species had significant declines in photosynthetic indices (maximum quantum yield, electron transport rate, saturation irradiance, and photochemical efficiency) and chlorophyll concentration compared to corals at ambient winter temperatures. It was previously unknown that corals at this site live close to their cold-water bleaching threshold and may be vulnerable as climate variability increases in magnitude. In order to determine if a cold winter reduces the known heat resistance of this population, the corals were subsequently exposed to an acute warm period at 30 °C the following summer. Exposed to above typical summer temperatures, both species showed fewer physiological deviations compared to the cold-water stress. Therefore, the cold winter experience did not increase corals' susceptibility to above ambient summer temperatures. This study provides further support for the selection of heat tolerant genotypes colonising the Red Sea basin and thereby support the mechanism behind the Reef Refuge Hypothesis.
Collapse
Affiliation(s)
- Jessica Bellworthy
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Maoz Fine
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
17
|
Puisay A, Elleaume N, Fouqueau L, Lacube Y, Goiran C, Sidobre C, Metian M, Hédouin L. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105200. [PMID: 33248410 DOI: 10.1016/j.marenvres.2020.105200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Coral reef ecosystems are declining at an alarming rate. Increasing seawater temperatures and occurrence of extreme warming events can impair sexual reproduction in reef-building corals and inhibit the ability for coral communities to replenish and persist. Here, we investigated the role of photophysiology on the reproductive ecology of Pocillopora acuta coral colonies by focusing on the impacts of bleaching susceptibility of parents on reproduction and larval performance, during an El Niño Southern Oscillation event in Mo'orea, French Polynesia. Elevated temperature conditions at that time induced bleaching phenotypic differences among P. acuta individuals: certain colonies became pale (from the loss of pigments and/or decline in symbiont cell density), while others remained pigmented (normal/high symbiont cell density). More specifically, we studied the impact of parental phenotypes on offspring's fluorescence by counting released larvae and sorting them by fluorescence types, we assessed survival to thermal stress, recruitment success and post-recruitment survival of released larvae from each fluorescent phenotype, during summer months (February to April 2016). Our results showed that red and green fluorescent larvae released by P. acuta had distinct physiological performances: red fluorescent larvae exhibited a higher survival into the pelagic phase regardless temperature conditions, with lower capacity to settle and survive post-recruitment, compared to green larvae that settle within a short period. Interestingly, pale colonies released two-to seven-fold more red fluorescent larvae than pigmented colonies did. In the light of our results, photophysiological profiles of the brooding P. acuta parental colonies may modulate the fluorescence features of released larvae, and thus influence the dispersal strategy of their offspring, the green fluorescent larval phenotypes being more performant in the benthic than pelagic phase.
Collapse
Affiliation(s)
- Antoine Puisay
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Nicolas Elleaume
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Louise Fouqueau
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; CNRS, UMI 3614, Evolutionary Biology and Ecology of Algae, Roscoff, France
| | - Yann Lacube
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Claire Goiran
- Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia; ISEA Institut de Sciences Exactes et Appliquées, Université de la Nouvelle-Calédonie, France
| | - Christine Sidobre
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98,000, Principality of Monaco, Monaco
| | - Laetitia Hédouin
- PSL Research University, USR 3278 CNRS EPHE UPVD CRIOBE, BP1013, Papetoai, French Polynesia; Laboratoire d'Excellence "CORAIL", B1013, 98,729 Papetoai, Mo'orea, French Polynesia.
| |
Collapse
|
18
|
Mitsuki Y, Isomura N, Nozawa Y, Tachikawa H, Huang D, Fukami H. Distinct species hidden in the widely distributed coral Coelastrea aspera (Cnidaria, Anthozoa, Scleractinia). INVERTEBR SYST 2021. [DOI: 10.1071/is21025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Species identification is key for coral reef conservation and restoration. Recent coral molecular-morphological studies have indicated the existence of many cryptic species. Coelastrea aspera (Verrill, 1866) is a zooxanthellate scleractinian coral that is widely distributed in the Indo-Pacific. In Japan, this species is distributed from the subtropical reef region to the high-latitudinal non-reef region. Previous studies have reported that C. aspera colonies in the non-reef region release egg-sperm bundles (bundle type), whereas those in the reef region release eggs and sperm separately (non-bundle type) and release planula larvae after spawning. This difference in reproduction might be relevant to species differences. To clarify the species delimitation of C. aspera, the reproduction, morphology and molecular phylogeny of C. aspera samples collected from reef and non-reef regions in Japan were analysed, along with additional morphological and molecular data of samples from northern Taiwan. The results show that C. aspera is genetically and morphologically separated into two main groups. The first group is the non-bundle type, distributed only in reef regions, whereas the second group is the bundle type, widely distributed throughout the reef and non-reef regions. Examination of type specimens of the taxon’s synonyms leads us to conclude that the first group represents the true C. aspera, whereas the second is Coelastrea incrustans comb. nov., herein re-established, that was originally described as Goniastrea incrustans Duncan, 1886, and had been treated as a junior synonym of C. aspera.
Collapse
|
19
|
Ainsworth TD, Hurd CL, Gates RD, Boyd PW. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? GLOBAL CHANGE BIOLOGY 2020; 26:343-354. [PMID: 31873988 DOI: 10.1111/gcb.14901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 05/06/2023]
Abstract
Extreme heat wave events are now causing ecosystem degradation across marine ecosystems. The consequences of this heat-induced damage range from the rapid loss of habitat-forming organisms, through to a reduction in the services that ecosystems support, and ultimately to impacts on human health and society. How we tackle the sudden emergence of ecosystem-wide degradation has not yet been addressed in the context of marine heat waves. An examination of recent marine heat waves from around Australia points to the potential important role that respite or refuge from environmental extremes can play in enabling organismal survival. However, most ecological interventions are being devised with a target of mid to late-century implementation, at which time many of the ecosystems, that the interventions are targeted towards, will have already undergone repeated and widespread heat wave induced degradation. Here, our assessment of the merits of proposed ecological interventions, across a spectrum of approaches, to counter marine environmental extremes, reveals a lack preparedness to counter the effects of extreme conditions on marine ecosystems. The ecological influence of these extremes are projected to continue to impact marine ecosystems in the coming years, long before these interventions can be developed. Our assessment reveals that approaches which are technologically ready and likely to be socially acceptable are locally deployable only, whereas those which are scalable-for example to features as large as major reef systems-are not close to being testable, and are unlikely to obtain social licence for deployment. Knowledge of the environmental timescales for survival of extremes, via respite or refuge, inferred from field observations will help test such intervention tools. The growing frequency of extreme events such as marine heat waves increases the urgency to consider mitigation and intervention tools that support organismal and ecosystem survival in the immediate future, while global climate mitigation and/or intervention are formulated.
Collapse
Affiliation(s)
- Tracy D Ainsworth
- Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Catriona L Hurd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| | - Ruth D Gates
- Hawaii Institute for Marine Biology, University of Hawai'i, Manoa, HI, USA
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tas., Australia
| |
Collapse
|
20
|
Taninaka H, Bernardo LPC, Saito Y, Nagai S, Ueno M, Kitano YF, Nakamura T, Yasuda N. Limited fine-scale larval dispersal of the threatened brooding corals Heliopora spp. as evidenced by population genetics and numerical simulation. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01228-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|