1
|
Zhu Z, Zuo S, Zhu Z, Wang C, Du Y, Chen F. THSWD upregulates the LTF/AMPK/mTOR/Becn1 axis and promotes lysosomal autophagy in hepatocellular carcinoma cells by regulating gut flora and metabolic reprogramming. Int Immunopharmacol 2025; 148:114091. [PMID: 39826450 DOI: 10.1016/j.intimp.2025.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/31/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
THSWD has the effect of reducing inflammation, improving microcirculation, and regulating immune status in patients with hepatocellular carcinoma. Regardless of its clear therapeutic effect, the underlying mechanism of action against hepatocellular carcinoma is not clear. To identify critical gut microbiota and its associated metabolites related to THSWD inhibition against hepatocellular carcinoma progression, we assessed the microbe-dependent anti-hepatocellular carcinoma effects of THSWD through 16 s rRNA gene sequencing, fecal microbial transplantation and antibiotic treatment. Metabolic analyses, transcriptomic analyses, and molecular experiments were performed to explore how THSWD modulates the gut microbiota against hepatocellular carcinoma progression. As confirmed by in vivo and in vitro assays, THSWD reduced tumour growth rate and promoted apoptosis in hepatocellular carcinoma cells in hepatocellular carcinoma model mice, and liver and kidney indexes were detected and confirmed the safety of THSWD. Transcriptomic analysis revealed that the targets of THSWD were significantly enriched in multiple lysosomal autophagy signalling pathways, suggesting that lysosomal autophagy is probably associated with THSWD's therapeutic effect. Based on the integrated data analysis, THSWD delays hepatocellular carcinoma progression by increasing the intestinal microbiota Duncaniella and augmenting the metabolite glabrol, and the joint analysis of metabolic and genomic data suggests that this metabolite is associated with lysosomal autophagy, and cellular experiments confirmed that the The differential metabolite glabrol induces apoptosis in hepatocellular carcinoma cells by triggering the lysosomal autophagy-mediated apoptosis signalling pathway. Supplementation with glabrol metabolites up regulates the LTF/AMPK/mTOR/Beclin1 axis and promotes hepatocellular carcinoma cells with lysosomal autophagy and induced apoptosis in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhiqin Zhu
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Shiqi Zuo
- Department of Pathology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Zhiqi Zhu
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Chen Wang
- Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yangfeng Du
- Changde Hospital, Xiangya School of Medicine, Central South University, 415000 Changde, China.
| | - Fengsheng Chen
- Department of Hepatology, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, 510315 Guangzhou, China.
| |
Collapse
|
2
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
3
|
Liu L, Wang B, Ma Y, Sun K, Wang P, Li M, Dong J, Qin M, Li M, Wei C, Tan Y, He J, Guo K, Yu XA. A review of Phyllanthus urinaria L. in the treatment of liver disease: viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma. Front Pharmacol 2024; 15:1443667. [PMID: 39185304 PMCID: PMC11341462 DOI: 10.3389/fphar.2024.1443667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the pathological production of liver disease in utility particularly complexity, the morbidity and mortality of liver disease including viral hepatitis, liver fibrosis/cirrhosis and hepatocellular carcinoma (HCC) are rapidly increasing worldwide. Considering its insidious onset, rapid progression and drug resistance, finding an effective therapy is particularly worthwhile. Phyllanthus urinaria L. (P. urinaria), an ethnic medicine, can be applied at the stages of viral hepatitis, liver fibrosis/cirrhosis and HCC, which demonstrates great potential in the treatment of liver disease. Currently, there are numerous reports on the application of P. urinaria in treating liver diseases, but a detailed analysis of its metabolites and a complete summary of its pharmacological mechanism are still scarce. In this review, the phytochemical metabolites and ethnopharmacological applications of P. urinaria are summarized. Briefly, P. urinaria mainly contains flavonoids, lignans, tannins, phenolic acids, terpenoids and other metabolites. The mechanisms of P. urinaria are mainly reflected in reducing surface antigen secretion and interfering with DNA polymerase synthesis for anti-viral hepatitis activity, reducing hepatic stellate cells activity, inflammation and oxidative stress for anti-liver fibrosis/cirrhosis activity, as well as preventing tumor proliferation, invasion and angiogenesis for anti-HCC activity via relevant signaling pathways. Accordingly, this review provides insights into the future application of natural products in the trilogy of liver diseases and will provide a scientific basis for further research and rational utilization of P. urinaria.
Collapse
Affiliation(s)
- Linhua Liu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Bing Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Yibo Ma
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Kunhui Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Ping Wang
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meifang Li
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Junlin Dong
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Meirong Qin
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Mingshun Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Chunshan Wei
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Ying Tan
- State Key Laboratory of Chemical Oncogenomics, Institute of Biopharmaceutical and Health Engineering, Shenzhen lnternational Graduate School, Tsinghua University, Shenzhen, China
| | - Jinsong He
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keying Guo
- Department of Biotechnology and Food Engineering, Guangdong-Technion Israel Institute of Technology, Shantou, China
| | - Xie-an Yu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China
| |
Collapse
|
4
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
5
|
Peng Y, Wu X, Zhang Y, Yin Y, Chen X, Zheng D, Wang J. An Overview of Traditional Chinese Medicine in the Treatment After Radical Resection of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:2305-2321. [PMID: 38143910 PMCID: PMC10743783 DOI: 10.2147/jhc.s413996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
According to the Barcelona Clinic Liver Cancer (BCLC) system, radical resection of early stage primary hepatocellular carcinoma (HCC) mainly includes liver transplantation, surgical resection, and radiofrequency ablation (RFA), which yield 5-year survival rates of about 70-79%, 41.3-69.5%, and 40-70%, respectively. The tumor-free 5-year rate for HCC patients undergoing radical resection only reach up to 13.7 months, so the prevention of recurrence after radical resection of HCC is very important for the prognosis of patients. The traditional Chinese medicine (TCM) takes the approach of multitarget and overall-regulation to treat tumors, it can also independently present the "component-target-pathway" related to a particular disease, and its systematic and holistic characteristics can provide a personalized therapy based on symptoms of the patient by treating the patient as a whole. TCM as postoperative adjuvant therapy after radical resection of HCC in Barcelona Clinic liver cancer A or B stages, and the numerous clinical trials confirmed that the efficacy of TCM in the field of HCC has a significant effect, not only improving the prognosis and quality of life but also enhancing patient survival rate. However, with the characteristics of multi-target, multi-component, and multi-pathway, the specific mechanism of Chinese medicine in the treatment of diseases is still unclear. Because of the positive pharmacological activities of TCM in combating anti-tumors, the mechanism studies of TCM have demonstrated beneficial effects on the regulation of immune function, chronic inflammation, the proliferation and metastasis of liver cancer cells, autophagy, and cell signaling pathways related to liver cancer. Therefore, this article reviews the mechanism of traditional Chinese medicine in reducing the recurrence rate of HCC after radical resection.
Collapse
Affiliation(s)
- Yichen Peng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Xia Wu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Yurong Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Yue Yin
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Xianglin Chen
- Department of Integrated Traditional Chinese & Western Medicine, The Southwest Medical University, Luzhou, People’s Republic of China
| | - Ding Zheng
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| | - Jing Wang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Hepatobiliary Department, Luzhou, People’s Republic of China
| |
Collapse
|
6
|
Han Z, Huang Q, Lv M, Ma M, Zhang W, Feng W, Hu R, Sun X, Li J, Zhong X, Zhou X. Qizhu Anti-Cancer Recipe promotes anoikis of hepatocellular carcinoma cells by activating the c-Jun N-terminal kinase pathway. Heliyon 2023; 9:e22089. [PMID: 38053871 PMCID: PMC10694164 DOI: 10.1016/j.heliyon.2023.e22089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023] Open
Abstract
Background Qizhu Anti-Cancer Recipe (QACR) is a traditional Chinese medicine widely used in treating several liver diseases. However, its function and the relevant mechanism underlying its effect in treating hepatocellular carcinoma (HCC) remain unknown. The aim of this study was to explore the effect of QACR in HCC, which are expected to be a potential therapeutic scheme for HCC. Materials and methods The chemical compositions of QACR were determined by liquid chromatography/quadrupole time-of-fight mass spectrometry (LC-QTOF-MS). The anoikis-resistant HCC cell proliferation and angiopoiesis were detected using the cell counting kit 8 (CCK8) assay, trypan blue, calcein AM/EthD-1, flow cytometer, Western blot, and tube formation assays. An orthotopic xenograft mouse model was established to evaluate the in vivo effects of the QACR. The expression of proliferating cell nuclear antigen (PCNA), Bcl-2, CD31, caspase-3, caspase-8, caspase-9, PARP-1, DFF40, phospho-c-Jun NH2-terminal kinase (p-JNK), and JNK was assessed using Western blot and immunohistochemical analysis. Results QACR reduced the growth and tube formation of anoikis-resistant HCC cells and enhanced cell apoptosis in vitro. In the orthotopic xenograft mouse models, QACR suppressed the tumorigenesis of HCC in vivo. Mechanistically, QACR modulated the JNK pathway. The JNK inhibitor (SP600125) reverses the inhibitory effects of QACR on anoikis-resistant HCC cell proliferation and angiopoiesis. Conclusion Our study suggests that QACR suppresses the proliferation and angiopoiesis of anoikis-resistant HCC cells by activating the JNK pathway. Therefore, QACR is a promising new therapeutic strategy for treating hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhiyi Han
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Qi Huang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Minling Lv
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Mengqing Ma
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Wei Zhang
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Wenxing Feng
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Rui Hu
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Xinfeng Sun
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Jing Li
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Xin Zhong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, No.1 Fuhua Road, Futian District, Shenzhen, 518000, China
- Department of Liver Disease, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, No. 1 Fuhua Road, Futian District, Shenzhen, 518000, China
| |
Collapse
|
7
|
Heya MS, García-Ponce R, Soto BAM, Verde-Star MJ, Soto-Domínguez A, García-Hernandez DG, Saucedo-Cárdenas O, Hernández-Salazar M, Guillén-Meléndez GA. Green Alternatives in Treatment of Liver Diseases: the Challenges of Traditional Medicine and Green Nanomedicine. Chem Biodivers 2023; 20:e202300463. [PMID: 37531499 DOI: 10.1002/cbdv.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
Over the last decade, liver diseases have become a global problem, with approximately two million deaths per year. The high increase in the mortality rate of these diseases is mostly related to the limitations in the understanding of the evolutionary clinical cases of liver diseases, the low delivery of drugs in the liver, the non-specific administration of drugs, and the side effects generated at the systemic level by conventional therapeutic agents. Today it is common knowledge that phytochemicals have a high curative potential, even in the prevention and/or reversibility of liver disorders; however, even using these green molecules, researchers continue to deal with the same challenges implemented with conventional therapeutic agents, which limits the pharmacological potential of these friendly molecules. On the other hand, the latest advances in nanotechnology have proven that the use of nanocarriers as a delivery system for green active ingredients, as well as conventional ones, increases the pharmacological potential of these active ingredients due to their physicochemical characteristics (size, Zeta potential, etc.,) moldable depending on the therapeutic objective; in addition to the above, it should be noted that in recent years, nanoparticles have been developed for the specific delivery of drugs towards a specific target (stellar cells, hepatocytes, Kupffer cells), depending on the clinical state of the disease in the patient. The present review addresses the challenges of traditional medicine and green nanomedicine as alternatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Michel Stephane Heya
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Romario García-Ponce
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Beatriz Amari Medina Soto
- Department of Microbiology, Faculty of Veterinary Medicine and Zootechnics., Universidad Autónoma de Nuevo León, Francisco Villa S/N, Ex Hacienda El Canadá, Gral. Escobedo, Nuevo León, México
| | - María Julia Verde-Star
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Adolfo Soto-Domínguez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - David Gilberto García-Hernandez
- Biological Science School, Universidad Autónoma de Nuevo León, Ave., Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolás de los Garza, 66451, Nuevo León, México
| | - Odila Saucedo-Cárdenas
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| | - Marcelo Hernández-Salazar
- Faculty of Public Health and Nutrition, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N & Ave. Manuel L. Barragán, San Nicolas de los Garza, 66451, Nuevo León, México
| | - Gloria Arely Guillén-Meléndez
- Department of Histology, Faculty of Medicine, Universidad Autónoma de Nuevo León, Madero y Aguirre Pequeño S/N, Mitras Centro, 64460, Monterrey, Nuevo León, México
| |
Collapse
|
8
|
Gupta R, Kadhim MM, Turki Jalil A, Obayes AM, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Tayyib NA, Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. ENVIRONMENTAL RESEARCH 2023; 228:115767. [PMID: 36966991 DOI: 10.1016/j.envres.2023.115767] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
The predominant kind of liver cancer is hepatocellular carcinoma (HCC) that its treatment have been troublesome difficulties for physicians due to aggressive behavior of tumor cells in proliferation and metastasis. Moreover, stemness of HCC cells can result in tumor recurrence and angiogenesis occurs. Another problem is development of resistance to chemotherapy and radiotherapy in HCC cells. Genomic mutations participate in malignant behavior of HCC and nuclear factor-kappaB (NF-κB) has been one of the oncogenic factors in different human cancers that after nuclear translocation, it binds to promoter of genes in regulating their expression. Overexpression of NF-κB has been well-documented in increasing proliferation and invasion of tumor cells and notably, when its expression enhances, it induces chemoresistance and radio-resistance. Highlighting function of NF-κB in HCC can shed some light on the pathways regulating progression of tumor cells. The first aspect is proliferation acceleration and apoptosis inhibition in HCC cells mediated by enhancement in expression level of NF-κB. Moreover, NF-κB is able to enhance invasion of HCC cells via upregulation of MMPs and EMT, and it triggers angiogenesis as another step for increasing spread of tumor cells in tissues and organs. When NF-κB expression enhances, it stimulates chemoresistance and radio-resistance in HCC cells and by increasing stemness and population of cancer-stem cells, it can provide the way for recurrence of tumor. Overexpression of NF-κB mediates therapy resistance in HCC cells and it can be regulated by non-coding RNAs in HCC. Moreover, inhibition of NF-κB by anti-cancer and epigenetic drugs suppresses HCC tumorigenesis. More importantly, nanoparticles are considered for suppressing NF-κB axis in cancer and their prospectives and results can also be utilized for treatment of HCC. Nanomaterials are promising factors in treatment of HCC and by delivery of genes and drugs, they suppress HCC progression. Furthermore, nanomaterials provide phototherapy in HCC ablation.
Collapse
Affiliation(s)
- Reena Gupta
- Institute of Pharmaceutical Research, GLA University, District-Mathura, U. P., India
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm al- Qura University, Makkah, Saudi Arabia
| | - Xuanming Luo
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
9
|
Hu S, Ge M, Zhang S, Jiang M, Hu K, Gao L. Integrated Network Pharmacology and Experimental Verification to Explore the Molecular Mechanism of Hedysarum Multijugum Maxim-Curcumae Rhizoma Herb Pair for Treating Non-Small Cell Lung Cancer. Front Oncol 2022; 12:854596. [PMID: 35433443 PMCID: PMC9007519 DOI: 10.3389/fonc.2022.854596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Background Hedysarum Multijugum Maxim–Curcumae Rhizoma (HMMCR), a well-known herb pair in traditional Chinese medicine (TCM), has been widely used for the treatment of various cancers. However, the active components of HMMCR and the underlying mechanism of HMMCR for non-small-cell lung carcinoma (NSCLC) remain unclear. Methods Active ingredients of HMMCR were detected by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). On this basis, potential targets of HMMCR were obtained from SwissTargetPrediction database. NSCLC-related targets were collected from four public databases (GeneCards, OMIM, TTD, and PharmGkb). The drug ingredients–disease targets network was visualized. The hub targets between HMMCR and NSCLC were further analyzed by protein–protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Subsequently, the results predicted by network pharmacology were further validated via in vitro experiments. Results A total of 181 compounds were identified from the aqueous extract of HMMCR. Through network analysis, a compound–target network including 153 active ingredients of HMMCR and 756 HMMCR-NSCLC co-targets was conducted; 6 crucial compounds and 62 hub targets were further identified. The results of KEGG enrichment analysis showed that PI3K/Akt signaling pathway may be the critical pathway of HMMCR in the treatment of NSCLC. The in vitro experiments indicated that HMMCR inhibits the proliferation and migration of NSCLC cells via inactivation of the PI3K/Akt signaling pathway, consistent with the results predicted by network pharmacology. Conclusion Integrating LC-ESI-MS/MS, network pharmacology approach, and in vitro experiments, this study shows that HMMCR has vital therapeutic effect on NSCLC through multi-compound, multi-target, and multi-pathway, which provides a rationale for using HMMCR for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shaopu Hu
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengxue Ge
- Department of Integrated Management, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuixiu Zhang
- Beijing University of Chinese Medicine, Beijing, China.,Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Min Jiang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Integrated Management, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Gao
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Cao X, Zao X, Xue B, Chen H, Zhang J, Li S, Li X, Zhu S, Guo R, Li X, Ye Y. The mechanism of TiaoGanYiPi formula for treating chronic hepatitis B by network pharmacology and molecular docking verification. Sci Rep 2021; 11:8402. [PMID: 33863948 PMCID: PMC8052433 DOI: 10.1038/s41598-021-87812-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Chinese herbal formula TiaoGanYiPi (TGYP) showed effective against chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection. Hence, we aimed to clarify the mechanisms and potential targets between TGYP and CHB. The active compounds and related putative targets of TGYP, and disease targets of CHB were obtained from the public databases. The key targets between TGYP and CHB were identified through the network construction and module analysis. The expression of the key targets was detected in Gene Expression Omnibus (GEO) dataset and normal hepatocyte cell line LO2. We first obtained 11 key targets which were predominantly enriched in the Cancer, Cell cycle and HBV-related pathways. And the expression of the key targets was related to HBV infection and liver inflammation verified in GSE83148 database. Furthermore, the results of real-time quantitative PCR and CCK-8 assay indicated that TGYP could regulate the expression of key targets including CCNA2, ABL1, CDK4, CDKN1A, IGFR and MAP2K1, and promote proliferation of LO2 cells. In coclusion, we identified the active compounds and key targets btween TGYP and CHB, and found that the TGYP might exhibite curative effect on CHB via promoting hepatocyte proliferation and inhibiting the liver inflammatory processes.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Baiquan Xue
- The First People's Hospital of Jinzhou District, Dalian, 116100, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shuo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaobin Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Shun Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.,Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Rui Guo
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yong'an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China. .,Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
11
|
Qin X, Liu J, Pan D, Ma W, Cheng P, Jin F. Corilagin induces human glioblastoma U251 cell apoptosis by impeding activity of (immuno)proteasome. Oncol Rep 2021; 45:34. [PMID: 33649855 PMCID: PMC7905533 DOI: 10.3892/or.2021.7985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 11/29/2022] Open
Abstract
Glioma is a type of common primary intracranial tumor, which is difficult to treat. It has been confirmed by research that corilagin (the primary active constituent of the matsumura leafflower herb) has significant antitumor effect. In particular, our previous research demonstrated that corilagin effectively promotes apoptosis of glioma U251 cells and has a synergistic effect when used with temozolomide. However, the mechanism by which corilagin causes apoptosis in U251 cells has yet to be investigated. Proteasomes are catalytic centers of the ubiquitin-proteasome system, which is the major protein degradation pathway in eukaryotic cells; they are primarily responsible for the degradation of signal molecules, tumor suppressors, cyclins and apoptosis inhibitors and serve an important role in tumor cell proliferation and apoptosis. The present study investigated the pro-apoptotic effect of corilagin on glioma U251 cells and confirmed that decreased proteasome activity and expression levels serve an important role in corilagin-induced U251 cell apoptosis.
Collapse
Affiliation(s)
- Xianyun Qin
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Jilan Liu
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Dongfeng Pan
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| | - Wenyuan Ma
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University and Shandong Provincial Key Laboratory of Stem Cells and Neuro‑Oncology, Jining, Shandong 272029, P.R. China
| | - Panpan Cheng
- Department of Hematology Laboratory, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Feng Jin
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
12
|
Ke W, Zhao X, Lu Z. Foeniculum vulgare seed extract induces apoptosis in lung cancer cells partly through the down-regulation of Bcl-2. Biomed Pharmacother 2021; 135:111213. [PMID: 33395604 DOI: 10.1016/j.biopha.2020.111213] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/07/2020] [Accepted: 12/26/2020] [Indexed: 12/14/2022] Open
Abstract
The factors behind the pathogenesis of lung cancer are not clear, and treatment failure is generally caused by drug resistance, recurrence, and metastasis. Development of new therapeutic agents to overcome drug-resistance remains a challenge clinically. Various extracts of Foeniculum vulgare have shown promising anticancer activity; however, effects on lung cancer and the underlying molecular mechanisms of action are not clear. In the present study, we found that the ethanol extract of Foeniculum vulgare seeds (EEFS) significantly reduced lung cancer cell growth in vitro and in vivo. EEFS decreased the viability of and triggered apoptosis in the lung cancer cell lines NCI-H446 and NCI-H661. EEFS induced apoptosis mainly through inhibition of Bcl-2 protein expression, reduction of mitochondrial membrane potential, and release of Cytochrome C. Moreover, EEFS significantly inhibited colony formation and cell migration in lung cancer cells. EEFS also effectively inhibited the growth of xenograft tumors derived from NCI-446 cells by reducing Bcl-2 protein expression and inducing apoptosis. Taken together, these findings suggest that EEFS exerts anti-lung cancer activity by targeting the Bcl-2 protein and may have potential as a therapeutic drug for lung cancer.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
13
|
Ke W, Wang H, Zhao X, Lu Z. Foeniculum vulgare seed extract exerts anti-cancer effects on hepatocellular carcinoma. Food Funct 2021; 12:1482-1497. [PMID: 33502415 DOI: 10.1039/d0fo02243h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The prognosis of HCC is very poor due to the absence of symptoms and a lack of effective treatments. Studies have shown that various Foeniculum vulgare (fennel) extracts exhibit anti-cancer effects on malignant tumors such as skin cancer and prostate cancer. However, the anti-tumor activity of Foeniculum vulgare and its underlying molecular mechanisms towards HCC are unknown. Here, we provide fundamental evidence to show that the 75% ethanol extract of Foeniculum vulgare seeds (FVE) reduced cell viability, induced apoptosis, and effectively inhibited cell migration in HCC cells in vitro. HCC xenograft studies in nude mice showed that FVE significantly inhibited HCC growth in vivo. Mechanistic analyses showed that FVE reduced survivin protein levels and triggered mitochondrial toxicity, subsequently inducing caspase-3 activation and apoptosis. Survivin inhibition effectively sensitized HCC cells to FVE-induced apoptosis. Moreover, FVE did not induce a decrease in survivin or apoptotic toxicity in normal liver cells. Collectively, in vivo and in vitro results suggest that FVE exerts inhibitory effects in HCC by targeting the oncoprotein survivin, suggesting FVE may be a potential anti-cancer agent that may benefit patients with HCC.
Collapse
Affiliation(s)
- Weiwei Ke
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Hongbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
14
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
15
|
Loratadine, an antihistamine drug, exhibits anti-inflammatory activity through suppression of the NF- kB pathway. Biochem Pharmacol 2020; 177:113949. [PMID: 32251678 DOI: 10.1016/j.bcp.2020.113949] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
Abstract
Loratadine is an antihistamine drug that shows promise as an anti-inflammatory drug, but supportive studies are lacking. We elucidated the effects and mechanisms by which loratadine inhibits inflammatory responses. Molecular components were evaluated in macrophages by nitric oxide assay, polymerase chain reaction, luciferase assay, immunoblotting, overexpression strategies and cellular thermal shift assay. At the molecular level, loratadine reduced the levels of nitric oxide, iNOS, IL-1β, TNF-α, IL-6, and COX-2 in RAW264.7 cells treated with lipopolysaccharide. Loratadine also specifically inhibited the NF-kB pathway, targeting the Syk and Src proteins. Furthermore, loratadine bound Src in the bridge between SH2 and SH3, and bound Syk in the protein tyrosine kinase domain. The NF-kB signaling pathway was assessed along with putative binding sites through a docking approach. The anti-inflammatory effect of loratadine was tested using mouse models of gastritis, hepatitis, colitis, and peritonitis. Stomach tissue histopathology, liver morphology, and colon length in the loratadine group were improved over the group without loratadine treatment. Taken together, loratadine inhibited the inflammatory response through the NF-kB pathway by binding with the Syk and Src proteins.
Collapse
|
16
|
Benzophenones from Anemarrhena asphodeloides Bge. Exhibit Anticancer Activity in HepG2 Cells via the NF-κB Signaling Pathway. Molecules 2019; 24:molecules24122246. [PMID: 31208101 PMCID: PMC6630431 DOI: 10.3390/molecules24122246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/15/2023] Open
Abstract
A chemical investigation of the fibrous roots of Anemarrhena asphodeloides Bge. led to the isolation of four benzophenones, including one new compound (1) and three known ones (2–4). Comprehensive 1D, 2D NMR and HRESIMS data established the structures of the isolated compounds. The absolute configurations were determined by comparison of the calculated optical rotation (OR) with experimental data. All the isolates were evaluated for their cytotoxicities on hepatocellular carcinoma cell lines (HepG2 and Hep3B). Compound 1 showed strong cytotoxicity against HepG2 and Hep3B cells, with IC50 values at 153.1 and 180.6 nM. Through MTT assay, flow cytometry and Western blot analysis, compound 1 demonstrated the ability to stimulate apoptosis via the NF-κB signaling pathway in HepG2 cells. These benzophenones are potential lead compounds for the development of better treatments for hepatocellular carcinoma.
Collapse
|