1
|
Wang YQ, Ren Y, Gale RP, Niu LT, Huang XJ. Sphingosine-1 phosphate receptor 1 (S1PR1) expression maintains stemness of acute myeloid leukemia stem cells. Cancer Lett 2024; 600:217158. [PMID: 39111385 DOI: 10.1016/j.canlet.2024.217158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Acute myeloid leukemia (AML) arises from leukemia stem cells (LSCs) and is maintained by cells which have acquired features of stemness. We compared transcription profiles of AML cells with/without stem cell features defined as in vitro clonogenicity and serial engraftment in immune-deficient mice xenograft model. We used multi-parameter flow cytometry (MPFC) to separate CD34+ bone marrow-derived leukemia cells into sphingosine-1 phosphate receptor 1 (S1PR1)+ and S1PR1- fractions. Cells in the S1PR1+ fraction demonstrated significantly higher clonogenicity and higher engraftment potential compared with those in the S1PR1- fraction. In contrast, CD34+ bone marrow cells from normal samples showed reduced clonogenicity in the S1PR1+ fraction compared with the S1PR1- fraction. Inhibition of S1PR1 expression in an AML cell line reduced the colony-forming potential of KG1 cells. Transcriptomic analyses and rescue experiments indicated PI3K/AKT pathway and MYBL2 are downstream mediators of S1PR1-associated stemness. These findings implicate S1PR1 as a functional biomarker of LSCs and suggest its potential as a therapeutic target in AML treatment.
Collapse
Affiliation(s)
- Yu-Qing Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yue Ren
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Robert Peter Gale
- Centre for Hematology Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Li-Ting Niu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematological Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
2
|
Walter W, Nadarajah N, Hutter S, Müller H, Haferlach C, Kern W, Haferlach T, Meggendorfer M. Characterization of myeloproliferative neoplasms based on genetics only and prognostication of transformation to blast phase. Leukemia 2024:10.1038/s41375-024-02425-1. [PMID: 39341969 DOI: 10.1038/s41375-024-02425-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Myeloproliferative neoplasms (MPN) are a heterogeneous group of clonal disorders characterized by aberrant hematopoietic proliferation and an intrinsic risk of progression to blast phase. The WHO classification 2022 identifies chronic myeloid leukemia and the BCR::ABL1 negative MPNs polycythemia vera, primary myelofibrosis and essential thrombocythemia as individual entities. However, overlaps, borderline findings or transitions between MPN subtypes occur and incomplete clinical data often complicates diagnosis. By conducting a thorough genetic analysis, we've developed a model that relies on 12 genetic markers to accurately stratify MPN patients. The model can be simplified into a decision tree for routine use. Comparing samples at chronic and blast phase revealed, that one third of patients lost their MPN driver-gene mutation, while mutations in splicing and chromatin modifying genes were stable, indicating a shared founder clone of chronic and blast phase with different driver mutations and therefore different progressing capacities. This was further supported by gain of typical de novo AML gene mutations, accompanied by gain of complex karyotypes and RAS pathway gene mutations. Our data suggest to perform a broader genetic screening at diagnosis and also at clinical progression, as driver mutations may change and the MPN-driver mutations present at diagnosis may disappear.
Collapse
|
3
|
Yan M, Chen X, Ye Q, Li H, Zhang L, Wang Y. IL-33-dependent NF-κB activation inhibits apoptosis and drives chemoresistance in acute myeloid leukemia. Cytokine 2024; 180:156672. [PMID: 38852492 DOI: 10.1016/j.cyto.2024.156672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Despite recent advances in therapeutic regimens, the prognosis of acute myeloid leukemia (AML) remains poor. Following our previous finding that interleukin-33 (IL-33) promotes cell survival along with activated NF-κB in AML, we further investigated the role of NF-κB during leukemia development. METHODS Flow cytometry was performed to value the apoptosis and proliferation. qRT-PCR and western blot were performed to detect the expression of IL-6, active caspase 3, BIRC2, Bcl-2, and Bax, as well as activated NF-κB p65 and AKT. Finally, xenograft mouse models and AML patient samples were used to verify the findings observed in AML cell lines. RESULTS IL-33-mediated NF-κB activation in AML cell lines contributes to a reduction in apoptosis, an increase in proliferation rate as well as a decrease in drug sensitivity, which were reversed by NF-κB inhibitor, Bay-117085. Moreover, IL-33 decreased the expression of active caspase-3 while increasing the levels of BIRC2, Bcl-2, and Bax, and these effects were blocked by Bay-117085. Additionally, NF-κB activation induced by IL-33 increases the production of IL-6 and autocrine activation of AKT. Co-culture of bone marrow stroma with AML cells resulted in increased IL-33 expression by leukemia cells, along with decreased apoptosis level and reduced drug sensitivity. Finally, we confirmed the in vivo pro-tumor effect mediated by IL-33/ NF-κB axis using a xenograft model of AML. CONCLUSION Our data indicate that IL-33/IL1RL1-dependent signaling contributes to AML cell activation of NF-κB, which in turn causes autocrine IL-6-induced activation of pAKT, supporting IL-33/NF-κB/pAKT as a potential target for AML therapy.
Collapse
Affiliation(s)
- Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huating Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yiqian Wang
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Naef P, Radpour R, Jaeger-Ruckstuhl CA, Bodmer N, Baerlocher GM, Doehner H, Doehner K, Riether C, Ochsenbein AF. IL-33-ST2 signaling promotes stemness in subtypes of myeloid leukemia cells through the Wnt and Notch pathways. Sci Signal 2023; 16:eadd7705. [PMID: 37643244 DOI: 10.1126/scisignal.add7705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Cell stemness is characterized by quiescence, pluripotency, and long-term self-renewal capacity. Therapy-resistant leukemic stem cells (LSCs) are the primary cause of relapse in patients with chronic and acute myeloid leukemia (CML and AML). However, the same signaling pathways frequently support stemness in both LSCs and normal hematopoietic stem cells (HSCs), making LSCs difficult to therapeutically target. In cell lines and patient samples, we found that interleukin-33 (IL-33) signaling promoted stemness only in leukemia cells in a subtype-specific manner. The IL-33 receptor ST2 was abundant on the surfaces of CD34+ BCR/ABL1 CML and CD34+ AML cells harboring AML1/ETO and DEK/NUP214 translocations or deletion of chromosome 9q [del(9q)]. The cell surface abundance of ST2, which was lower or absent on other leukemia subtypes and HSCs, correlated with stemness, activated Wnt signaling, and repressed Notch signaling. IL-33-ST2 signaling promoted the maintenance and expansion of AML1/ETO-, DEK/NUP214-, and BCR/ABL1-positive LSCs in culture and in mice by activating Wnt, MAPK, and NF-κB signaling. Wnt signaling and its inhibition of the Notch pathway up-regulated the expression of the gene encoding ST2, thus forming a cell-autonomous loop. IL-33-ST2 signaling promoted the resistance of CML cells to the tyrosine kinase inhibitor (TKI) nilotinib and of AML cells to standard chemotherapy. Thus, inhibiting IL-33-ST2 signaling may target LSCs to overcome resistance to chemotherapy or TKIs in these subtypes of leukemia.
Collapse
Affiliation(s)
- Pascal Naef
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Carla A Jaeger-Ruckstuhl
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Nils Bodmer
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Gabriela M Baerlocher
- Laboratory for Hematopoiesis and Molecular Genetics, Experimental Hematology, Department of BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Hartmut Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Konstanze Doehner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern 3008, Switzerland
| |
Collapse
|
5
|
Lei S, Jin J, Zhao X, Zhou L, Qi G, Yang J. The role of IL-33/ST2 signaling in the tumor microenvironment and Treg immunotherapy. Exp Biol Med (Maywood) 2022; 247:1810-1818. [PMID: 35733343 PMCID: PMC9679353 DOI: 10.1177/15353702221102094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-33 is a tissue-derived nuclear cytokine belonging to the IL-1 family. Stimulation-2 (ST2) is the only known IL-33 receptor. ST2 signals mostly on immune cells found within tissues, such as regulatory T cells (Treg cells), CD8+ T cells, and natural killer (NK) cells. Therefore, the IL-33/ST2 signaling pathway is important in the immune system. IL-33 deficiency impairs Treg cell function. ST2 signaling is also increased in active Treg cells, providing a new approach for Treg-related immunotherapy. The IL-33/ST2 signaling pathway regulates multiple immune-related cells by activating various intracellular kinases and factors in the tumor microenvironment (TME). Here, we review the latest studies on the role of the IL-33/ST2 signaling pathway in TME and Treg immunotherapy.
Collapse
Affiliation(s)
- Shangbo Lei
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jiamin Jin
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiangfeng Zhao
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Lihua Zhou
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Guangying Qi
- Department of Pathophysiology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Jinfeng Yang
- Department of Immunology, Guilin Medical University, Guilin 541199, Guangxi, China,Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541199, Guangxi, China,Jinfeng Yang.
| |
Collapse
|
6
|
Li Y, Jiang D, Zhang Q, Liu E, Shao H. Clinical implications and genetical insights of SOX6 expression in acute myeloid leukemia. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04349-8. [PMID: 36117190 DOI: 10.1007/s00432-022-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Transcription factor SOX6 belongs to Sry-related high-mobility-group box (SOX) family, has been reported to be downregulated and acts as a tumor-suppressor gene in various solid tumors, but in acute myeloid leukemia (AML) is incompletely understood. METHODS The SOX6 expression was analyzed between AML patients and normal controls from public data and our research cohort. Correlations between SOX6 expression and clinical, genetic features together with survival were further analyzed. RESULTS In both public and our present datasets, we demonstrated that SOX6 expression is notably downregulated in AML patients compared with normal controls. Moreover, the expression level of SOX6 was dynamic, along with the disease status. SOX6 was significantly decreased in relapsed/refractory AML compared with complete remission AML. Clinically, SOX6 underexpression was significantly correlated with bone marrow blasts, and WBC counts. Furthermore, decreased expression of SOX6 was more common in core binding factor AML (CBF-AML), rarely found in complex karyotype AML (CK-AML), and correlated with FLT3 mutations. By survival analyses, low-expression of SOX6 was associated with shorter overall survival (OS) and event-free survival (EFS) among cytogenetic normal AML (CN-AML) patients. Moreover, both univariate and multivariate analyses showed that low SOX6 expression was an independent unfavorable prognostic biomarker for CN-AML. CONCLUSIONS Our findings indicated that SOX6 underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. SOX6 might be a valuable biomarker for risk stratification, predicting prognosis and relapse of AML.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Duanfeng Jiang
- Department of Hematology, Second Affiliated Hospital of Hainan Medical College, Haikou, 570311, Hainan, China
| | - Qin Zhang
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haigang Shao
- Department of Hematology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Wang Y, Hou H, Liang Z, Chen X, Lian X, Yang J, Zhu Z, Luo H, Su H, Gong Q. P38 MAPK/AKT signalling is involved in IL-33-mediated anti-apoptosis in childhood acute lymphoblastic leukaemia blast cells. Ann Med 2021; 53:1461-1469. [PMID: 34435521 PMCID: PMC8405111 DOI: 10.1080/07853890.2021.1970217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukaemia (ALL) is often characterized by broad clinical and biological heterogeneity, as well as recurrent genetic aberrations. Despite remarkable improvements in the treatment outcome in paediatric ALL over the past several decades, it remains a leading cause of morbidity and mortality among children. Cytokines have been extensively studied in haematologic diseases; however, the mechanisms by which cytokines contribute to ALL pathogenesis remain poorly understood. METHODS IL-33 levels were measured by enzyme-linked immunosorbent assay (ELISA). IL1RL1 expression on ALL cell surface was accessed by flow cytometry. Expression of phosphorylated p38 MAPK, p38, pAKT, AKT and GAPDH were quantified by western blot. Cell survival signals were evaluated by apoptosis using flow cytometry. RESULTS BM samples from ALL patients at diagnosis upregulated their cell surface expression of IL1RL1, and a higher interleukin (IL)-33 level in the serum was observed as compared to the healthy individuals. Moreover, exogenous IL-33 treatment significantly inhibited apoptosis by activating p38 mitogen-activated protein kinase (MAPK) and AKT pathway, while the inhibitor for p38 MAPK, SB203580, counteracted IL-33-induced anti-apoptosis via inactivation of p38 MAPK and AKT. Furthermore, IL-33 negatively regulates cyclin B1 protein level while increasing the expression of CDK1, with SB203580 inhibiting the effect. CONCLUSION Our study reveals an important role for IL-33/IL1RL1 axis in supporting ALL which may represent a novel treatment for paediatric patients.KEY MESSAGESBoth IL-33 and IL1RL1 levels are upregulated in primary ALL samples.IL-33 increased both p38 MAPK and AKT activation in ALL.IL-33 promotes survival and cell cycle progression of ALL cells via activating p38 MAPK.
Collapse
Affiliation(s)
- Yiqian Wang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hanyi Hou
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Zhongping Liang
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xuexin Chen
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xindan Lian
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Jie Yang
- School of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Zeyu Zhu
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Huanmin Luo
- The Third Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- The Sixed Affiliated Hospital, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Wang Y, Su H, Yan M, Zhang L, Tang J, Li Q, Gu X, Gong Q. Interleukin-33 Promotes Cell Survival via p38 MAPK-Mediated Interleukin-6 Gene Expression and Release in Pediatric AML. Front Immunol 2020; 11:595053. [PMID: 33324412 PMCID: PMC7726021 DOI: 10.3389/fimmu.2020.595053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/28/2020] [Indexed: 11/30/2022] Open
Abstract
Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). Cytokine provide signals for leukemia cells to improve their survival in the BM microenvironment. Previously, we identified interleukin-33 (IL-33) as a promoter of cell survival in a human AML cell line and primary mouse leukemia cells. In this study, we report that the cell surface expression of IL-33–specific receptor, Interleukin 1 Receptor Like 1 (IL1RL1), is elevated in BM cells from AML patients at diagnosis, and the serum level of IL-33 in AML patients is higher than that of healthy donor controls. Moreover, IL-33 levels are found to be positively associated with IL-6 levels in pediatric patients with AML. In vitro, IL-33 treatment increased IL-6 mRNA expression and protein level in BM and peripheral blood (PB) cells from AML patients. Evidence was also provided that IL-33 inhibits cell apoptosis by activating p38 mitogen-activated protein kinase (MAPK) pathway using human AML cell line and AML patient samples. Finally, we confirmed that IL-33 activated IL-6 expression in a manner that required p38 MAPK pathway using clinical AML samples. Taken together, we identified a potential mechanism of IL-33–mediated survival involving p38 MAPK in pediatric AML patients that would facilitate future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haibo Su
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Muxia Yan
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiancheng Tang
- Department of Anesthesiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quanxin Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Blood Transfusion, Clinical Biological Resource Bank and Clinical Lab, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol 2020; 18:711-722. [PMID: 32728200 DOI: 10.1038/s41423-020-0501-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
In cancer, myeloid cells have tumor-supporting roles. We reported that the protein GPNMB (glycoprotein nonmetastatic B) was profoundly upregulated in macrophages interacting with tumor cells. Here, using mouse tumor models, we show that macrophage-derived soluble GPNMB increases tumor growth and metastasis in Gpnmb-mutant mice (DBA/2J). GPNMB triggers in the cancer cells the formation of self-renewing spheroids, which are characterized by the expression of cancer stem cell markers, prolonged cell survival and increased tumor-forming ability. Through the CD44 receptor, GPNMB mechanistically activates tumor cells to express the cytokine IL-33 and its receptor IL-1R1L. We also determined that recombinant IL-33 binding to IL-1R1L is sufficient to induce tumor spheroid formation with features of cancer stem cells. Overall, our results reveal a new paracrine axis, GPNMB and IL-33, which is activated during the cross talk of macrophages with tumor cells and eventually promotes cancer cell survival, the expansion of cancer stem cells and the acquisition of a metastatic phenotype.
Collapse
|
10
|
Wang Y, Luo H, Wei M, Becker M, Hyde RK, Gong Q. IL-33/IL1RL1 axis regulates cell survival through the p38 MAPK pathway in acute myeloid leukemia. Leuk Res 2020; 96:106409. [PMID: 32652328 DOI: 10.1016/j.leukres.2020.106409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) is often characterized by the presence of specific and recurrent chromosomal abnormalities. Current treatments have greatly increased remission rate, but relapse still occurs. Therefore, novel therapeutic approaches are required. Previously, using a conditional Cbfb-MYH11 knockin mouse model, we showed that Cbfb-MYH11 induces the expression of a cytokine receptor, IL1RL1. Treatment with IL-33, the only known ligand of IL1RL1, promotes leukemia cell survival in vitro. We further found that IL1RL1+ cells survive better with chemotherapy than IL1RL1- population. However, the mechanism is not clear. Here, we show that IL-33 treatment decreased drug sensitivity in the human inv(16) AML cell line ME-1. By RT-PCR, we found that IL-33 increased the expression of IL-4 and IL-6 and led to the activation of both p38 MAPK and NF-κB. We also showed that IL-33 decreased apoptosis with increased phosphorylation of p38 MAPK. Moreover, pre-treatment with MAPK inhibitor attenuated the phosphorylation of p38 enhanced by IL-33 and reversed the anti-apoptotic effect by IL-33. Taken together, our findings give news insights into the potential mechanism of the anti-apoptotic effect by IL-33/IL1RL1 axis in AML which will help in future drug development.
Collapse
Affiliation(s)
- Yiqian Wang
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China
| | - Huanmin Luo
- Third Clinical School, Guangzhou Medical University, Guangzhou, PR China
| | - Mengyi Wei
- Nanshan School, Guangzhou Medical University, Guangzhou, PR China
| | - Michelle Becker
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Katherine Hyde
- Department of Biochemistry and Molecular Biology, and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
11
|
Liu L, Cao J, Zhao J, Li X, Suo Z, Li H. PDHA1 Gene Knockout In Human Esophageal Squamous Cancer Cells Resulted In Greater Warburg Effect And Aggressive Features In Vitro And In Vivo. Onco Targets Ther 2019; 12:9899-9913. [PMID: 31819487 PMCID: PMC6874154 DOI: 10.2147/ott.s226851] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Background One of the remarkable metabolic characteristics of cancer cells is that they prefer glycolysis rather than oxidative phosphorylation (OXPHOS). Pyruvate dehydrogenase E1 alpha subunit (PDHA1) is an important prerequisite for OXPHOS. Our previous studies have shown that low level of PDHA1 protein expression in esophageal squamous cell cancer (ESCC) was correlated with poor prognosis. However, the effect of PDHA1 inhibition on metabolism and biological behavior of esophageal cancer cells remains unclear. Methods And Results In this study, a KYSE450 PDHA1 knockout (KO) cell line of esophageal cancer was established by CRISPR/Cas9 technology. Then, the glycose metabolism, cell proliferation and migration abilities, chemotherapeutic tolerance and angiogenesis of the PDHA1 KO cells were investigated in vitro and in vivo. In the PDHA1 KO cells, the glycolysis and the consumption of glucose and glutamine were significantly enhanced, while the OXPHOS was significantly suppressed, implying Warburg effect in the PDHA1 KO cells. Furthermore, it was also proved in vitro experiments that the PDHA1 KO cell obtained proliferation advantage, as well as significantly greater chemotherapy tolerance and migration ability. Xenograft experiments discovered not only larger tumors but also increased angiogenesis in the PDHA1 KO cell group. Conclusion Inhibition of PDHA1 gene expression in human ESCC leads to metabolic reprogramming of Warburg effect and increased malignancies. Targeting ESCC metabolic reprogramming may become a potential therapeutic target.
Collapse
Affiliation(s)
- Lan Liu
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Jing Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Xiangyu Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| | - Zhenhe Suo
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Montebello, Oslo, Norway
| | - Huixiang Li
- Department of Pathology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, People's Republic of China
| |
Collapse
|
12
|
The ST2/Interleukin-33 Axis in Hematologic Malignancies: The IL-33 Paradox. Int J Mol Sci 2019; 20:ijms20205226. [PMID: 31652497 PMCID: PMC6834139 DOI: 10.3390/ijms20205226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-33 is a chromatin-related nuclear interleukin that is a component of IL-1 family. IL-33 production augments the course of inflammation after cell damage or death. It is discharged into the extracellular space. IL-33 is regarded as an “alarmin” able to stimulate several effectors of the immune system, regulating numerous immune responses comprising cancer immune reactions. IL-33 has been demonstrated to influence tumorigenesis. However, as far as this cytokine is concerned, we are faced with what has sometimes been defined as the IL-33 paradox. Several studies have demonstrated a relevant role of IL-33 to numerous malignancies, where it may have pro- and—less frequently—antitumorigenic actions. In the field of hematological malignancies, the role of IL-33 seems even more complex. Although we can affirm the existence of a negative role of IL-33 in Chronic myelogenos leukemia (CML) and in lymphoproliferative diseases and a positive role in pathologies such as Acute myeloid leukemia (AML), the action of IL-33 seems to be multiple and sometimes contradictory within the same pathology. In the future, we will have to learn to govern the negative aspects of activating the IL-33/ST2 axis and exploit the positive ones.
Collapse
|
13
|
Long-Acting IL-33 Mobilizes High-Quality Hematopoietic Stem and Progenitor Cells More Efficiently Than Granulocyte Colony-Stimulating Factor or AMD3100. Biol Blood Marrow Transplant 2019; 25:1475-1485. [PMID: 31163266 DOI: 10.1016/j.bbmt.2019.05.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 02/08/2023]
Abstract
Mobilization of hematopoietic stem and progenitor cells (HSPCs) has become increasingly important for hematopoietic cell transplantation. Current mobilization approaches are insufficient because they fail to mobilize sufficient numbers of cells in a significant fraction of patients and are biased toward myeloid immune reconstitution. A novel, single drug mobilization agent that allows a more balanced (myeloid and lymphoid) reconstitution would therefore be highly favorable to improve transplantation outcome. In this present study, we tested commercially available IL-33 molecules and engineered novel variants of IL-33. These molecules were tested in cell-based assays in vitro and in mobilization models in vivo. We observed for the first time that IL-33 treatment in mice mobilized HSPCs and common myeloid progenitors more efficiently than clinical mobilizing agents granulocyte colony-stimulating factor (G-CSF) or AMD3100. We engineered several oxidation-resistant IL-33 variants with equal or better in vitro activity. In vivo, these variants mobilized HSPCs and, interestingly, also hematopoietic stem cells, common lymphoid progenitor cells, and endothelial progenitor cells more efficiently than wild-type IL-33 or G-CSF. We then engineered an IL-33-Fc fusion molecule, a single dose of which was sufficient to significantly increase the mobilization of HSPCs after 4 days. In conclusion, our findings suggest that long-acting, oxidation-resistant IL-33 may be a novel approach for HSPC transplantation. IL-33-mobilized HSPCs differ from cells mobilized with G-CSF and AMD3100, and it is possible that these differences may result in better transplantation outcomes.
Collapse
|
14
|
Use of polymeric CXCR4 inhibitors as siRNA delivery vehicles for the treatment of acute myeloid leukemia. Cancer Gene Ther 2019; 27:45-55. [PMID: 31028289 DOI: 10.1038/s41417-019-0095-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults and is associated with poor long-term survival often owing to relapse. Current treatments for AML are associated with considerable toxicity and are frequently not effective after relapse. Thus, it is important to develop novel therapeutic strategies. Short interfering RNA (siRNA)-based therapeutics targeting key oncogenes have been proposed as treatments for AML. We recently developed novel siRNA delivery polycations (PCX) based on AMD3100 (plerixafor), an FDA-approved inhibitor of the CXC chemokine receptor 4 (CXCR4). Inhibitors of CXCR4 have been shown to sensitize leukemia cells to chemotherapy. Therefore, PCX has the potential to target leukemia cells via two mechanisms: inhibition of CXCR4 and delivery of siRNAs against critical genes. In this report, we show that PCX exerts a cytotoxic effect on leukemia cells more effectively than other CXCR4 inhibitors, including AMD3100. In addition, we show that PCX can deliver siRNAs against the transcription factor RUNX1 to mouse and human leukemia cells. Overall, our study provides the first evidence that dual-function PCX/siRNA nanoparticles can simultaneously inhibit CXCR4 and deliver siRNAs, targeting key oncogenes in leukemia cells and that PCX/siRNA has clinical potential for the treatment of AML.
Collapse
|