1
|
Priebe A, Michler J. Review of Recent Advances in Gas-Assisted Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS). MATERIALS (BASEL, SWITZERLAND) 2023; 16:2090. [PMID: 36903205 PMCID: PMC10003971 DOI: 10.3390/ma16052090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a powerful chemical characterization technique allowing for the distribution of all material components (including light and heavy elements and molecules) to be analyzed in 3D with nanoscale resolution. Furthermore, the sample's surface can be probed over a wide analytical area range (usually between 1 µm2 and 104 µm2) providing insights into local variations in sample composition, as well as giving a general overview of the sample's structure. Finally, as long as the sample's surface is flat and conductive, no additional sample preparation is needed prior to TOF-SIMS measurements. Despite many advantages, TOF-SIMS analysis can be challenging, especially in the case of weakly ionizing elements. Furthermore, mass interference, different component polarity of complex samples, and matrix effect are the main drawbacks of this technique. This implies a strong need for developing new methods, which could help improve TOF-SIMS signal quality and facilitate data interpretation. In this review, we primarily focus on gas-assisted TOF-SIMS, which has proven to have potential for overcoming most of the aforementioned difficulties. In particular, the recently proposed use of XeF2 during sample bombardment with a Ga+ primary ion beam exhibits outstanding properties, which can lead to significant positive secondary ion yield enhancement, separation of mass interference, and inversion of secondary ion charge polarity from negative to positive. The implementation of the presented experimental protocols can be easily achieved by upgrading commonly used focused ion beam/scanning electron microscopes (FIB/SEM) with a high vacuum (HV)-compatible TOF-SIMS detector and a commercial gas injection system (GIS), making it an attractive solution for both academic centers and the industrial sectors.
Collapse
|
2
|
Abstract
Organic batteries using redox-active polymers and small organic compounds have become promising candidates for next-generation energy storage devices due to the abundance, environmental benignity, and diverse nature of organic resources. To date, tremendous research efforts have been devoted to developing advanced organic electrode materials and understanding the material structure-performance correlation in organic batteries. In contrast, less attention was paid to the correlation between electrolyte structure and battery performance, despite the critical roles of electrolytes for the dissolution of organic electrode materials, the formation of the electrode-electrolyte interphase, and the solvation/desolvation of charge carriers. In this review, we discuss the prospects and challenges of organic batteries with an emphasis on electrolytes. The differences between organic and inorganic batteries in terms of electrolyte property requirements and charge storage mechanisms are elucidated. To provide a comprehensive and thorough overview of the electrolyte development in organic batteries, the electrolytes are divided into four categories including organic liquid electrolytes, aqueous electrolytes, inorganic solid electrolytes, and polymer-based electrolytes, to introduce different components, concentrations, additives, and applications in various organic batteries with different charge carriers, interphases, and separators. The perspectives and outlook for the future development of advanced electrolytes are also discussed to provide a guidance for the electrolyte design and optimization in organic batteries. We believe that this review will stimulate an in-depth study of electrolytes and accelerate the commercialization of organic batteries.
Collapse
Affiliation(s)
- Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Robert Paul Hicks
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
| | - Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Chao Luo
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California-Riverside, Riverside, California 92521, United States
| | - Chunsheng Wang
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Li M, Yang J, Shi Y, Chen Z, Bai P, Su H, Xiong P, Cheng M, Zhao J, Xu Y. Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107226. [PMID: 34796556 DOI: 10.1002/adma.202107226] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Organic electrode materials free of rare transition metal elements are promising for sustainable, cost-effective, and environmentally benign battery chemistries. However, severe shuttling effect caused by the dissolution of active materials in liquid electrolytes results in fast capacity decay, limiting their practical applications. Here, using a gel polymer electrolyte (GPE) that is in situ formed on Nafion-coated separators, the shuttle reaction of organic electrodes is eliminated while maintaining the electrochemical performance. The synergy of physical confinement by GPE with tunable polymer structure and charge repulsion of the Nafion-coated separator substantially prevents the soluble organic electrode materials with different molecular sizes from shuttling. A soluble small-molecule organic electrode material of 1,3,5-tri(9,10-anthraquinonyl)benzene demonstrates exceptional electrochemical performance with an ultra-long cycle life of 10 000 cycles, excellent rate capability of 203 mAh g-1 at 100 C, and a wide working temperature range from -70 to 100 °C based on the solid-liquid conversion chemistry, which outperforms all previously reported organic cathode materials. The shielding capability of GPE can be designed and tailored toward organic electrodes with different molecular sizes, thus providing a universal resolution to the shuttling effect that all soluble electrode materials suffer.
Collapse
Affiliation(s)
- Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Jixing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yeqing Shi
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Panxing Bai
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Hai Su
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Peixun Xiong
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Mingren Cheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Jiwei Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Surface-Functionalized Separator for Stable and Reliable Lithium Metal Batteries: A Review. NANOMATERIALS 2021; 11:nano11092275. [PMID: 34578592 PMCID: PMC8469813 DOI: 10.3390/nano11092275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022]
Abstract
Metallic Li has caught the attention of researchers studying future anodes for next-generation batteries, owing to its attractive properties: high theoretical capacity, highly negative standard potential, and very low density. However, inevitable issues, such as inhomogeneous Li deposition/dissolution and poor Coulombic efficiency, hinder the pragmatic use of Li anodes for commercial rechargeable batteries. As one of viable strategies, the surface functionalization of polymer separators has recently drawn significant attention from industries and academics to tackle the inherent issues of metallic Li anodes. In this article, separator-coating materials are classified into five or six categories to give a general guideline for fabricating functional separators compatible with post-lithium-ion batteries. The overall research trends and outlook for surface-functionalized separators are reviewed.
Collapse
|
5
|
Yu L, Zhou X, Lu L, Wu X, Wang F. Recent Developments of Nanomaterials and Nanostructures for High-Rate Lithium Ion Batteries. CHEMSUSCHEM 2020; 13:5361-5407. [PMID: 32776650 DOI: 10.1002/cssc.202001562] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Lithium ion batteries have been considered as a promising energy-storage solution, the performance of which depends on the electrochemical properties of each component, including cathode, anode, electrolyte and separator. Currently, fast charging is becoming an attractive research field due to the widespread application of batteries in electric vehicles, which are designated to replace conventional diesel automobiles in the future. In these batteries, rate capability, which is closely linked to the topology and morphology of electrode materials, is one of the determining parameters of interest. It has been revealed that nanotechnology is an exceptional tool in designing and preparing cathodes and anodes with outstanding electrochemical kinetics due to the well-known nanosizing effect. Nevertheless, the negative effects of applying nanomaterials in electrodes sometimes outweigh the benefits. To better understand the exact function of nanostructures in solid-state electrodes, herein, a comprehensive review is provided beginning with the fundamental theory of lithium ion transport in solids, which is then followed by a detailed analysis of several major factors affecting the migration of lithium ions in solid-state electrodes. The latest developments in characterisation techniques, based on either electrochemical or radiology methodologies, are covered as well. In addition, state-of-the-art research findings are provided to illustrate the effect of nanomaterials and nanostructures in promoting the rate performance of lithium ion batteries. Finally, several challenges and shortcomings of applying nanotechnology in fabricating high-rate lithium ion batteries are summarised.
Collapse
Affiliation(s)
- LePing Yu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - XiaoHong Zhou
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - Lu Lu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - XiaoLi Wu
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| | - FengJun Wang
- Institute of Automotive Technology, Wuxi Vocational Institute of Commerce, Wuxi, Jiangsu, 214153, P. R. China
| |
Collapse
|
6
|
Thangavel R, Moorthy M, Ganesan BK, Lee W, Yoon WS, Lee YS. Nanoengineered Organic Electrodes for Highly Durable and Ultrafast Cycling of Organic Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003688. [PMID: 32964623 DOI: 10.1002/smll.202003688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Sodium-ion batteries (SIBs) have become increasingly important as next-generation energy storage systems for application in large-scale energy storage. It is very crucial to develop an eco-friendly and green SIB technique with superior performance for sustainable future use. Replacing the conventional inorganic electrode materials with green and safe organic electrodes will be a promising approach. However, the poor electrochemical kinetics, unstable electrode-electrolyte interface, high solubility of the electrodes in the electrolyte, and large amount of conductive carbon present great challenges for organic SIBs. In this study, the issues of organic electrodes are addressed through atomic-level manipulation of these organic molecules using a series of ultrathin (Å-level) metal oxide coatings (Al2 O3 , ZnO, and TiO2 ). Uniform and precise coatings on the perylene-3,4,9,10-tetracarboxylicacid dianhydride by gas-phase atomic layer deposition technique shows a stable interphase, enhanced electrochemical kinetics (71C, 10 A g-1 ), and excellent stability (89%-500 cycles) compared to conventional organic electrode (70%-200 cycles). Further studies reveal that the chemical stability of the metal oxide coating layer plays a critical role in influencing the redox behavior, and improving kinetics of organic electrodes. This study opens a new avenue for developing high-energy organic SIBs with performance equivalent to inorganic counterparts.
Collapse
Affiliation(s)
- Ranjith Thangavel
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Megala Moorthy
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Bala Krishnan Ganesan
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Wontae Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
- The Institute of New Paradigm of Energy Science Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won-Sub Yoon
- Department of Energy Science, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Yun-Sung Lee
- School of Chemical Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
7
|
Wu H, Zhang J, Du X, Zhang M, Yang J, Zhang J, Luo T, Liu H, Xu H, Cui G. A large π-conjugated tetrakis (4-carboxyphenyl) porphyrin anode enables high specific capacity and superior cycling stability in lithium-ion batteries. Chem Commun (Camb) 2019; 55:11370-11373. [PMID: 31478549 DOI: 10.1039/c9cc05474j] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated a novel single molecule - tetrakis(4-carboxyphenyl) porphyrin (TCPP) with a large π-conjugated system as a high-performance organic anode of lithium batteries. It was found that this TCPP displayed relatively low solubility (<0.1 mg mL-1) in a 1 M LiDFOB/PC electrolyte, high reversible specific capacity (ca. 1200 mA h g-1 at 358 mA g-1), excellent rate capability (548.4 mA h g-1 at 8 A g-1) and superior cycling performance (capacity retention of 89% after 2500 cycles at 6 A g-1).
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yeşilot S, Hacıvelioğlu F, Küçükköylü S, Demir E, Çelik KB, Demir‐Cakan R. A novel polyphosphazene with nitroxide radical side groups as cathode‐active material in Li‐ion batteries. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Serkan Yeşilot
- Department of ChemistryGebze Technical University Gebze Turkey
| | | | | | - Emrah Demir
- Institute of NanotechnologyGebze Technical University Gebze Turkey
| | - Kamile Burcu Çelik
- Department of Material Science and EngineeringGebze Technical University Gebze Turkey
- Institute of NanotechnologyGebze Technical University Gebze Turkey
| | - Rezan Demir‐Cakan
- Department of Chemical EngineeringGebze Technical University Gebze Turkey
- Institute of NanotechnologyGebze Technical University Gebze Turkey
| |
Collapse
|