1
|
Robador A. The subseafloor crustal biosphere: Ocean's hidden biogeochemical reactor. Front Microbiol 2024; 15:1495895. [PMID: 39664056 PMCID: PMC11631926 DOI: 10.3389/fmicb.2024.1495895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024] Open
Abstract
Underlying the thick sediment layer in ocean basins, the flow of seawater through the cracked and porous upper igneous crust supports a previously hidden and largely unexplored active subsurface microbial biome. Subseafloor crustal systems offer an enlarged surface area for microbial habitats and prolonged cell residence times, promoting the evolution of novel microbial lineages in the presence of steep physical and thermochemical gradients. The substantial metabolic potential and dispersal capabilities of microbial communities within these systems underscore their crucial role in biogeochemical cycling. However, the intricate interplay between fluid chemistry, temperature variations, and microbial activity remains poorly understood. These complexities introduce significant challenges in unraveling the factors that regulate microbial distribution and function within these dynamic ecosystems. Using synthesized data from previous studies, this work describes how the ocean crustal biosphere functions as a continuous-flow biogechemical reactor. It simultaneously promotes the breakdown of surface-derived organic carbon and the creation of new, chemosynthetic material, thereby enhancing element recycling and ocean carbon productivity. Insights gained from the qualitative analysis of the extent of biogeochemical microbial activity and diversity across the temperature and chemical gradients that characterize these habitats, as reviewed herein, challenge traditional models of global ocean carbon productivity and provide the development of a new conceptual framework for understanding the quantitative metabolic potential and broad dispersal of the crustal microbial biome.
Collapse
Affiliation(s)
- Alberto Robador
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Mukherjee D, Selvi VA, Ganguly J, Masto RE. New insights into the coal-associated methane architect: the ancient archaebacteria. Arch Microbiol 2024; 206:234. [PMID: 38664262 DOI: 10.1007/s00203-024-03961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 05/20/2024]
Abstract
Exploration and marketable exploitation of coalbed methane (CBM) as cleaner fuel has been started globally. In addition, incidence of methane in coal basins is an imperative fraction of global carbon cycle. Significantly, subsurface coal ecosystem contains methane forming archaea. There is a rising attention in optimizing microbial coal gasification to exploit the abundant or inexpensive coal reserves worldwide. Therefore, it is essential to understand the coalbeds in geo-microbial perspective. Current review provides an in-depth analysis of recent advances in our understanding of how methanoarchaea are distributed in coal deposits globally. Specially, we highlight the findings on coal-associated methanoarchaeal existence, abundance, diversity, metabolic activity, and biogeography in diverse coal basins worldwide. Growing evidences indicates that we have arrived an exciting era of archaeal research. Moreover, gasification of coal into methane by utilizing microbial methanogenesis is a considerable way to mitigate the energy crisis for the rising world population.
Collapse
Affiliation(s)
- Diptangshu Mukherjee
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| | - Vetrivel Angu Selvi
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India.
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology Shibpur, PO Botanical Garden, Howrah, West Bengal, 711103, India
| | - Reginald Ebhin Masto
- Industrial Biotechnology and Waste Utilization Research Group, CSIR-Central Institute of Mining and Fuel Research, Digwadih Campus, PO FRI, Dhanbad, Jharkhand, 828108, India
| |
Collapse
|
3
|
Imachi H, Nobu MK, Miyazaki M, Tasumi E, Saito Y, Sakai S, Ogawara M, Ohashi A, Takai K. Cultivation of previously uncultured microorganisms with a continuous-flow down-flow hanging sponge (DHS) bioreactor, using a syntrophic archaeon culture obtained from deep marine sediment as a case study. Nat Protoc 2022; 17:2784-2814. [PMID: 36104596 DOI: 10.1038/s41596-022-00735-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
In microbiology, cultivation is a central approach for uncovering novel physiology, ecology, and evolution of microorganisms, but conventional methods have left many microorganisms found in nature uncultured. To overcome the limitations of traditional methods and culture indigenous microorganisms, we applied a two-stage approach: enrichment/activation of indigenous organisms by using a continuous-flow down-flow hanging sponge bioreactor and subsequent selective batch cultivation. Here, we provide a protocol for this bioreactor-mediated technique using activation of deep marine sediment microorganisms and downstream isolation of a syntrophic co-culture containing an archaeon closely related to the eukaryote ancestor (Candidatus Promethearchaeum syntrophicum strain MK-D1) as an example. Both stages can easily be tailored to target other environments and organisms by modifying the inoculum, feed solution/gases, attachment material and/or cultivation media. We anaerobically incubate polyurethane sponges inoculated with deep-sea methane seep sediment in a reactor at 10 °C and feed anaerobic artificial seawater medium and methane. Once phylogenetically diverse and metabolically active microorganisms are adapted to synthetic conditions in the reactor, we transition to growing community samples in glass tubes with the above medium, simple substrates and selective compounds (e.g., antibiotics). To accommodate for the slow growth anticipated for target organisms, primary cultures can be incubated for ≥6-12 months and analyzed for community composition even when no cell turbidity is observed. One casamino acid- and antibiotic-amended culture prepared in this way led to the enrichment of uncultured archaea. Through successive transfer in vitro combined with molecular growth monitoring, we successfully obtained the target archaeon with its partner methanogen as a pure syntrophic co-culture.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yumi Saito
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sanae Sakai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Miyuki Ogawara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Akiyoshi Ohashi
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
4
|
Mandal S, Bose H, Ramesh K, Sahu RP, Saha A, Sar P, Kazy SK. Depth wide distribution and metabolic potential of chemolithoautotrophic microorganisms reactivated from deep continental granitic crust underneath the Deccan Traps at Koyna, India. Front Microbiol 2022; 13:1018940. [PMID: 36504802 PMCID: PMC9731672 DOI: 10.3389/fmicb.2022.1018940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
Characterization of inorganic carbon (C) utilizing microorganisms from deep crystalline rocks is of major scientific interest owing to their crucial role in global carbon and other elemental cycles. In this study we investigate the microbial populations from the deep [up to 2,908 meters below surface (mbs)] granitic rocks within the Koyna seismogenic zone, reactivated (enriched) under anaerobic, high temperature (50°C), chemolithoautotrophic conditions. Subsurface rock samples from six different depths (1,679-2,908 mbs) are incubated (180 days) with CO2 (+H2) or HCO3 - as the sole C source. Estimation of total protein, ATP, utilization of NO3 - and SO4 2- and 16S rRNA gene qPCR suggests considerable microbial growth within the chemolithotrophic conditions. We note a better response of rock hosted community towards CO2 (+H2) over HCO3 -. 16S rRNA gene amplicon sequencing shows a depth-wide distribution of diverse chemolithotrophic (and a few fermentative) Bacteria and Archaea. Comamonas, Burkholderia-Caballeronia-Paraburkholderia, Ralstonia, Klebsiella, unclassified Burkholderiaceae and Enterobacteriaceae are reactivated as dominant organisms from the enrichments of the deeper rocks (2335-2,908 mbs) with both CO2 and HCO3 -. For the rock samples from shallower depths, organisms of varied taxa are enriched under CO2 (+H2) and HCO3 -. Pseudomonas, Rhodanobacter, Methyloversatilis, and Thaumarchaeota are major CO2 (+H2) utilizers, while Nocardioides, Sphingomonas, Aeromonas, respond towards HCO3 -. H2 oxidizing Cupriavidus, Hydrogenophilus, Hydrogenophaga, CO2 fixing Cyanobacteria Rhodobacter, Clostridium, Desulfovibrio and methanogenic archaea are also enriched. Enriched chemolithoautotrophic members show good correlation with CO2, CH4 and H2 concentrations of the native rock environments, while the organisms from upper horizons correlate more to NO3 -, SO4 2- , Fe and TIC levels of the rocks. Co-occurrence networks suggest close interaction between chemolithoautotrophic and chemoorganotrophic/fermentative organisms. Carbon fixing 3-HP and DC/HB cycles, hydrogen, sulfur oxidation, CH4 and acetate metabolisms are predicted in the enriched communities. Our study elucidates the presence of live, C and H2 utilizing Bacteria and Archaea in deep subsurface granitic rocks, which are enriched successfully. Significant impact of depth and geochemical controls on relative distribution of various chemolithotrophic species enriched and their C and H2 metabolism are highlighted. These endolithic microorganisms show great potential for answering the fundamental questions of deep life and their exploitation in CO2 capture and conversion to useful products.
Collapse
Affiliation(s)
- Sunanda Mandal
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Himadri Bose
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Kheerthana Ramesh
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| | - Rajendra Prasad Sahu
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, WB, India
| | - Sufia Khannam Kazy
- Environmental Microbiology and Biotechnology Laboratory, Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, WB, India
| |
Collapse
|
5
|
Nuppunen-Puputti M, Kietäväinen R, Raulio M, Soro A, Purkamo L, Kukkonen I, Bomberg M. Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Front Microbiol 2022; 13:826048. [PMID: 35300483 PMCID: PMC8921683 DOI: 10.3389/fmicb.2022.826048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023] Open
Abstract
The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.g., bacteria with outer membrane vesicle-like structures, hair-like extracellular extensions, and long tubular cell structures expanding over hundreds of micrometers over mica schist surfaces. Bacterial communities were analyzed with amplicon sequencing showing that Pseudomonas, Desulfosporosinus, Hydrogenophaga, and Brevundimonas genera dominated communities after 8–40 months of incubation. A total of 21 metagenome assembled genomes from sessile rock surface metagenomes identified genes involved in biofilm formation, as well as a wide variety of metabolic traits indicating a high degree of environmental adaptivity to oligotrophic environment and potential for shifting between multiple energy or carbon sources. In addition, we detected ubiquitous organic carbon oxidation and capacity for arsenate and selenate reduction within our rocky MAGs. Our results agree with the previously suggested interaction between the deep subsurface microbial communities and the rock surfaces, and that this interaction could be crucial for sustaining life in the harsh anoxic and oligotrophic deep subsurface of crystalline bedrock environment.
Collapse
Affiliation(s)
| | | | - Mari Raulio
- European Chemicals Agency (ECHA), Helsinki, Finland
| | - Aino Soro
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
6
|
Wakamatsu T, Mizobuchi S, Mori F, Futagami T, Terada T, Morono Y. Construction of Aerobic/Anaerobic-Substrate-Induced Gene Expression Procedure for Exploration of Metagenomes From Subseafloor Sediments. Front Microbiol 2022; 12:726024. [PMID: 35095779 PMCID: PMC8793675 DOI: 10.3389/fmicb.2021.726024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.
Collapse
Affiliation(s)
- Taisuke Wakamatsu
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Saki Mizobuchi
- Agricultural Sciences, Graduate School of Integrated Arts and Sciences, Kochi University, Kōchi, Japan
| | - Fumiaki Mori
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | - Yuki Morono
- Geomicrobiology Group, Kochi Institute for Core Smaple Research, Japan Agency for Marine-Earth Science and Technology, Kōchi, Japan
- *Correspondence: Yuki Morono,
| |
Collapse
|
7
|
Watanabe M, Kojima H, Okano K, Fukui M. Mariniplasma anaerobium gen. nov., sp. nov., a novel anaerobic marine mollicute, and proposal of three novel genera to reclassify members of Acholeplasma clusters II-IV. Int J Syst Evol Microbiol 2021; 71. [PMID: 34874244 DOI: 10.1099/ijsem.0.005138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic chemoorganotrophic bacterium, designated Mahy22T, was isolated from sulfidic bottom water of a shallow brackish meromictic lake in Japan. Cells of the strain were Gram-stain-negative, non-motile and coccoid in shape with diameters of about 600-800 nm. The temperature range for growth was 15-37 °C, with optimum growth at 30-32 °C. The pH range for growth was pH 6.2-8.9, with optimum growth at pH 7.2-7.4. The strain grew with NaCl concentrations of 5% or below (optimum, 2-3%). Growth of the strain was enhanced by the addition of thiosulfate. The major cellular fatty acids were C16:0 and anteiso-C15:0. Respiratory quinones were not detected. The complete genome sequence of strain Mahy22T possessed a 1 885 846 bp circular chromosome and a 12 782 bp circular genetic element. The G+C content of the genome sequence was 30.1 mol%. Phylogenetic analysis based on the 16S rRNA gene revealed that the novel strain belonged to the family Acholeplasmataceae, class Mollicutes. The closest relative of strain Mahy22T with a validly published name was Acholeplasma palmae J233T with a 16S rRNA gene sequence similarity of 90.5%. Based on the results of polyphasic analysis, the name Mariniplasma anaerobium gen. nov., sp. nov. is proposed to accommodate strain Mahy22T, along with reclassification of some Acholeplasma species into Alteracholeplasma gen. nov., Haploplasma gen. nov. and Paracholeplasma gen. nov.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan.,Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| | - Kunihiro Okano
- Department of Biological Environment, Akita Prefectural University, Shimoshinjyo-Nakano, Akita 010-0195, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
| |
Collapse
|
8
|
Thrash JC. Towards culturing the microbe of your choice. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:36-41. [PMID: 33073476 DOI: 10.1111/1758-2229.12898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Affiliation(s)
- J Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
9
|
Aoki M, Kowada T, Hirakata Y, Watari T, Yamaguchi T. Enrichment of microbial communities for hexavalent chromium removal using a biofilm reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1589-1595. [PMID: 32998606 DOI: 10.1080/10934529.2020.1826791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Given the toxicity and widespread occurrence of hexavalent chromium [Cr(VI)] in aquatic environments, we investigated the feasibility of a down-flow hanging sponge (DHS) biofilm reactor for the enrichment of microbial communities capable of Cr(VI) removal. In the present study, a laboratory-scale DHS reactor fed with a molasses-based medium containing Cr(VI) was operated for 112 days for the investigation. The enrichment of Cr(VI)-removing microbial communities was evaluated based on water quality and prokaryotic community analyses. Once the DHS reactor began to operate, high average volumetric Cr(VI) removal rates of 1.21-1.45 mg L-sponge-1 h-1 were confirmed under varying influent Cr(VI) concentrations (approximately 20-40 mg L-1). 16S rRNA gene amplicon sequencing analysis suggested the presence of phylogenetically diverse prokaryotic lineages, including phyla that contain well-known Cr(VI)-reducing bacteria (e.g., Bacteroidetes, Firmicutes, and Proteobacteria) in the polyurethane sponge media of the DHS reactor. Therefore, our findings indicate that DHS reactors have great potential for the enrichment of Cr(VI)-removing microbial communities.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Taisei Kowada
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Yuga Hirakata
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
10
|
Segawa T, Yonezawa T. Evaluation of reported sediment samples from 20 Ma using a molecular phylogenetic approach: comment on Liu et al. (2017). Environ Microbiol 2020; 22:813-818. [PMID: 31984637 DOI: 10.1111/1462-2920.14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 11/28/2022]
Abstract
Liu et al. reported the cultivation and DNA sequencing of 69 fungal isolates (Ascomycota and Basidiomycota) from ancient subseafloor sediments, suggesting that they represent living fungal populations that have persisted for over 20 million years. Because these findings could bring about a paradigm shift in our understanding of the spatial breadth of the deep subsurface biosphere as well as the longevity of ancient DNA, it is extremely important to verify that their samples represent pure ancient fungi from 20 million years ago without contamination by modern species. For this purpose, we estimated the divergence times of Dikarya (Ascomycota + Basidiomycota) and Mucoromycota fungi assuming that the fungal isolates were actually sampled from 20 Ma (mega-annum) sediments and evaluated the validity of the sample ages. Using this approach, we estimate that the age of the last common ancestor of Dikarya and Mucoromycota fungi greatly exceeds the age of the Earth. Our finding emphasizes the importance of using reliable approaches to confirm the dating of ancient samples.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi, Japan
| | - Takahiro Yonezawa
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737, Funako, Atsugi, Kanagawa, Japan
| |
Collapse
|
11
|
Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K, Ikuta T, Ito M, Matsui Y, Miyazaki M, Murata K, Saito Y, Sakai S, Song C, Tasumi E, Yamanaka Y, Yamaguchi T, Kamagata Y, Tamaki H, Takai K. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020; 577:519-525. [PMID: 31942073 PMCID: PMC7015854 DOI: 10.1038/s41586-019-1916-6] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022]
Abstract
The origin of eukaryotes remains unclear1-4. Current data suggest that eukaryotes may have emerged from an archaeal lineage known as 'Asgard' archaea5,6. Despite the eukaryote-like genomic features that are found in these archaea, the evolutionary transition from archaea to eukaryotes remains unclear, owing to the lack of cultured representatives and corresponding physiological insights. Here we report the decade-long isolation of an Asgard archaeon related to Lokiarchaeota from deep marine sediment. The archaeon-'Candidatus Prometheoarchaeum syntrophicum' strain MK-D1-is an anaerobic, extremely slow-growing, small coccus (around 550 nm in diameter) that degrades amino acids through syntrophy. Although eukaryote-like intracellular complexes have been proposed for Asgard archaea6, the isolate has no visible organelle-like structure. Instead, Ca. P. syntrophicum is morphologically complex and has unique protrusions that are long and often branching. On the basis of the available data obtained from cultivation and genomics, and reasoned interpretations of the existing literature, we propose a hypothetical model for eukaryogenesis, termed the entangle-engulf-endogenize (also known as E3) model.
Collapse
Affiliation(s)
- Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| | - Nozomi Nakahara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yuki Morono
- Kochi Institute for Core Sample Research, X-star, JAMSTEC, Nankoku, Japan
| | - Miyuki Ogawara
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshihiro Takaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yoshinori Takano
- Biogeochemistry Program, Research Institute for Marine Resources Utilization, JAMSTEC, Yokosuka, Japan
| | - Katsuyuki Uematsu
- Department of Marine and Earth Sciences, Marine Work Japan, Yokosuka, Japan
| | - Tetsuro Ikuta
- Research Institute for Global Change, JAMSTEC, Yokosuka, Japan
| | - Motoo Ito
- Kochi Institute for Core Sample Research, X-star, JAMSTEC, Nankoku, Japan
| | - Yohei Matsui
- Research Institute for Marine Resources Utilization, JAMSTEC, Yokosuka, Japan
| | - Masayuki Miyazaki
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | | | - Yumi Saito
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Sanae Sakai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Eiji Tasumi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yuko Yamanaka
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, Okazaki, Japan
| |
Collapse
|
12
|
Tamaki H. Cultivation Renaissance in the Post-Metagenomics Era: Combining the New and Old. Microbes Environ 2019; 34:117-120. [PMID: 31243255 PMCID: PMC6594738 DOI: 10.1264/jsme2.me3402rh] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|