1
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone and Gallium-Protoporphyrin Chitogel as an antimicrobial treatment: Preclinical studies demonstrating antimicrobial activity for S. aureus infected cutaneous wounds. Int J Biol Macromol 2024; 276:133874. [PMID: 39013511 DOI: 10.1016/j.ijbiomac.2024.133874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Staphylococcus aureus (S. aureus) is one of the most common wound pathogens with increased resistance towards currently available antimicrobials. S. aureus biofilms lead to increase wound chronicity and delayed healing. Chitosan-dextran hydrogel (Chitogel) loaded with the hydroxypyridinone-derived iron chelator Deferiprone (Def) and the heme analogue Gallium-Protoporphyrin (GaPP) have previously been shown to have antimicrobial effects in clinical sinusitis. In this study, the efficacy of Chitogel loaded with Def, GaPP and a combination of Def and GaPP, were investigated in an S. aureus biofilm infected wound murine model over 10 days of treatment. Bacterial wound burden was monitored daily showing a significant decrease in bacterial bioburden on days 6 and 8 when treated with Def-GaPP Chitogel (log10 1.0 and 1.2 reduction vs control, respectively). The current study demonstrates that the combination of Def-GaPP delivered in a Chitogel in vivo is not only effective in reducing S. aureus biofilm infection, but also improves cutaneous healing via effects on reduced inflammation, promotion of anti-inflammatory macrophage phenotype and marked early collagen deposition in the wound bed. This delivery platform presents a promising alternative non-toxic, antibacterial, wound-promoting treatment as a novel approach for the management of S. aureus wound infections that warrants further clinical investigation.
Collapse
Affiliation(s)
- T L Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - H Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Department of Gastroenterology, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - G S Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - P J Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - A J Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | - S Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia; Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA, Australia
| | - Z Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia.
| |
Collapse
|
2
|
Xu Y, Huang S, Zhou S, Wang X, Wei M, Chen X, Zong R, Lin X, Li S, Liu Z, Chen Q. Iron Chelator Deferiprone Restores Iron Homeostasis and Inhibits Retinal Neovascularization in Experimental Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:5. [PMID: 39093298 PMCID: PMC11305424 DOI: 10.1167/iovs.65.10.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose Retinal neovascularization is a significant feature of advanced age-related macular degeneration (AMD) and a major cause of blindness in patients with AMD. However, the underlying mechanism of this pathological neovascularization remains unknown. Iron metabolism has been implicated in various biological processes. This study was conducted to investigate the effects of iron metabolism on retinal neovascularization in neovascular AMD (nAMD). Methods C57BL/6J and very low-density lipoprotein receptor (VLDLR) knockout (Vldlr-/-) mice, a murine model of nAMD, were used in this study. Bulk-RNA sequencing was used to identify differentially expressed genes. Western blot analysis was performed to test the expression of proteins. Iron chelator deferiprone (DFP) was administrated to the mice by oral gavage. Fundus fluorescein angiography was used to evaluate retinal vascular leakage. Immunofluorescence staining was used to detect macrophages and iron-related proteins. Results RNA sequencing (RNA-seq) results showed altered transferrin expression in the retina and RPE of Vldlr-/- mice. Disrupted iron homeostasis was observed in the retina and RPE of Vldlr-/- mice. DFP mitigated iron overload and significantly reduced retinal neovascularization and vascular leakage. In addition, DFP suppressed the inflammation in Vldlr-/- retinas. The reduced signals of macrophages were observed at sites of neovascularization in the retina and RPE of Vldlr-/- mice after DFP treatment. Further, the IL-6/JAK2/STAT3 signaling pathway was activated in the retina and RPE of Vldlr-/- mice and reversed by DFP treatment. Conclusions Disrupted iron metabolism may contribute to retinal neovascularization in nAMD. Restoring iron homeostasis by DFP could be a potential therapeutic approach for nAMD.
Collapse
Affiliation(s)
- Yuan Xu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shiya Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shengmei Zhou
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xin Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mingyan Wei
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaodong Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Rongrong Zong
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiang Lin
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Shiying Li
- Department of Ophthalmology, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qian Chen
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Megow A, Bouras G, Alsuliman Y, Cooksley C, Vyskocil E, Murphy W, Vreugde S, Wormald PJ. Chitogel with deferiprone following endoscopic sinus surgery: improved wound healing and microbiome. Front Surg 2024; 11:1338209. [PMID: 38638142 PMCID: PMC11024462 DOI: 10.3389/fsurg.2024.1338209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 04/20/2024] Open
Abstract
Background Adhesion formation, sinus ostial narrowing, and presence of pathogenic bacteria are associated with poor outcomes following endoscopic sinus surgery (ESS) for chronic rhinosinusitis. Chitogel has been shown to improve wound healing, restore a healthier microbiome, and reduce post-operative infections post ESS. Deferiprone has antibacterial properties and has been shown to reduce adhesion formation. The aim of the study was to assess whether the addition of low concentration deferiprone to Chitogel further improves surgical outcomes following ESS compared with Chitogel alone. Methods In this double-blinded trial, 45 patients undergoing ESS were prospectively recruited. At the end of the surgery, patients were randomised to receive Chitogel alone, Chitogel with 1 mM of deferiprone, or Chitogel with 5 mM of deferiprone to one side of the sinuses (allowing the other side to serve as control). Patients underwent routine follow-ups with symptom questionnaires and nasoendoscopies performed at 2, 6, and 12 weeks post-operatively. Sinus ostial measurements, microbiology, and microbiome swabs from bilateral middle meatuses were collected intraoperatively and at 12 weeks post-operatively. Results A significant improvement in the endoscopic appearance of the sinuses and frontal ostial patency was noted at 12 weeks post-operatively (p < 0.05) in all three treatment groups compared with the control. There was no significant difference noted between patients who received Chitogel alone and those who received Chitogel with 1 or 5 mM deferiprone. Conclusion Chitogel alone, Chitogel with 1 mM deferiprone, and Chitogel with 5 mM deferiprone used following ESS led to a significant improvement in endoscopic appearance of the sinuses and frontal ostial preservation at 12 weeks post-operatively. No significant difference was found with the addition of deferiprone to Chitogel.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter-John Wormald
- Department of Surgery—Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Li J, Koonyosying P, Korsieporn W, Paradee N, Hutachok N, Xu H, Ma Y, Chuljerm H, Srichairatanakool S. Deferiprone-resveratrol hybrid attenuates iron accumulation, oxidative stress, and antioxidant defenses in iron-loaded human Huh7 hepatic cells. Front Mol Biosci 2024; 11:1364261. [PMID: 38572444 PMCID: PMC10987756 DOI: 10.3389/fmolb.2024.1364261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Chronic liver diseases are complications of thalassemia with iron overload. Iron chelators are required to remove excessive iron, and antioxidants are supplemented to diminish harmful reactive oxygen species (ROS), purposing to ameliorate oxidative liver damage and dysfunctions. The deferiprone-resveratrol hybrid (DFP-RVT) is a synthetic iron chelator possessing anti-β-amyloid peptide aggregation, anti-malarial activity, and hepatoprotection in plasmodium-infected mice. The study focuses on investigating the antioxidant, cytotoxicity, iron-chelating, anti-lipid peroxidation, and antioxidant defense properties of DFP-RVT in iron-loaded human hepatocellular carcinoma (Huh7) cells. In the findings, DFP-RVT dose dependently bound Fe(II) and Fe(III) and exerted stronger ABTS•- and DPPH•-scavenging (IC50 = 8.0 and 164 μM, respectively) and anti-RBC hemolytic activities (IC50 = 640 μM) than DFP but weaker than RVT (p < 0.01). DFP-RVT was neither toxic to Huh7 cells nor PBMCs. In addition, DFP-RVT diminished the level of redox-active iron (p < 0.01) and decreased the non-heme iron content (p < 0.01) in iron-loaded Huh7 cells effectively when compared without treatment in the order of DFP-RVT > RVT ∼ DFP treatments (50 µM each). Moreover, the compound decreased levels of hepatic ROS in a dose-dependent manner and the level of malondialdehyde, which was stronger than DFP but weaker than RVT. Furthermore, DFP-RVT restored the decrease in the GSH content and GPX and SOD activities (p < 0.01) in iron-loaded Huh7 cells in the dose-dependent manner, consistently in the order of RVT > DFP-RVT > DFP. Thus, the DFP-RVT hybrid possesses potent iron chelation, antioxidation, anti-lipid peroxidation, and antioxidant defense against oxidative liver damage under iron overload.
Collapse
Affiliation(s)
- Jin Li
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Woranontee Korsieporn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Narisara Paradee
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuntouchaporn Hutachok
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Honghong Xu
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biochemistry, Faculty of Basic Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Yongmin Ma
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, China
| | - Hataichanok Chuljerm
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | |
Collapse
|
6
|
Kennewell TL, Haidari H, Mashtoub S, Howarth GS, Bennett C, Cooksley CM, Wormald PJ, Cowin AJ, Vreugde S, Kopecki Z. Deferiprone-Gallium-Protoporphyrin Chitogel Decreases Pseudomonas aeruginosa Biofilm Infection without Impairing Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2024; 17:793. [PMID: 38399044 PMCID: PMC10889926 DOI: 10.3390/ma17040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing.
Collapse
Affiliation(s)
- Tahlia L. Kennewell
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Hanif Haidari
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Suzanne Mashtoub
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia;
- Department of Gastroenterology, Women’s and Children’s Hospital, North Adelaide, SA 5006, Australia
| | - Gordon S. Howarth
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia;
| | - Catherine Bennett
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Clare M. Cooksley
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Peter John Wormald
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Allison J. Cowin
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| | - Sarah Vreugde
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia; (C.B.); (C.M.C.); (P.J.W.); (S.V.)
- Department of Surgery Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; (T.L.K.); (H.H.); (A.J.C.)
| |
Collapse
|
7
|
Vediappan RS, Bennett C, Cooksley C, Bassiouni A, Scott JR, Al Suliman YA, Lumyongsatien J, Moratti S, Psaltis AJ, Vreugde S, Wormald PJ. Wound healing in endoscopic sinus surgery: Phase 1 clinical trial evaluating the role of Chitogel with adjuvants. Clin Otolaryngol 2023; 48:158-166. [PMID: 36317791 DOI: 10.1111/coa.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study aimed to determine the safety and efficacy of Chitogel, with and without Deferiprone (Def) and Gallium Protoporphyrin (GaPP), as a promoter of wound healing to improve surgical outcomes after endoscopic sinus susgery. DESIGN A double-blinded, randomised control human clinical trial was conducted in patients undergoing ESS as a treatment for chronic rhinosinusitis. Participants underwent functional ESS or FESS with drill out as required and were randomised to receive test product Chitogel, Chitogel in combination with Def or Def-GaPP versus no packing (control). SETTING Ostial stenosis and persistent inflammation are the main reasons for revision endoscopic sinus surgery (ESS). Post-operative (PO) dressings can improve PO wound healing and patient outcomes after ESS. PARTICIPANTS Eighty two patients were included in this study with 79 patients completing the study with 40 undergoing full house FESS and 39 FESS plus frontal drillout. MAIN OUTCOME MEASURES Patients were followed up at 2, 6 and 12 weeks PO, and outcome scores such as SNOT-22, VAS and LKS, pre and post-surgery (12 weeks) were compared. RESULTS Seventy nine patients completed the study, there was a significant reduction in SNOT-22 score and improvement of VAS at 12 weeks in patients treated with Chitogel compared to control (p < .05). In those patients, the mean ostium area for the Chitogel and the Chitogel + Def + GaPP groups was higher across all three sinuses compared to the no-treatment control group, without statistical significance. Sphenoid sinus ostium was significantly more patent in patients treated with Chitogel compared to the control at the 12-week time point (p < .05). CONCLUSION Chitogel as a PO dressing after ESS results in the best patient-reported symptom scores and objective measurements. The combination of Def and GaPP to Chitogel though proving safe, had no effect on the ostium patency or mucosal healing.
Collapse
Affiliation(s)
- Rajan Sundaresan Vediappan
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Department of ENT, Unit-1, Head & Neck, Skull Base Surgery, Christian Medical College, Vellore, India
| | - Catherine Bennett
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia
| | - Clare Cooksley
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ahmed Bassiouni
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia
| | - John R Scott
- Department of Otolaryngology-Head & Neck Surgery, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Yazeed A Al Suliman
- Department of Otolaryngology, Head and Neck Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Jate Lumyongsatien
- Department of Otorhinolaryngology Head and Neck Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Stephen Moratti
- Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Alkis J Psaltis
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Otolaryngology Head and Neck Surgery, Central Adelaide Health Network, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Otolaryngology Head and Neck Surgery, Central Adelaide Health Network, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery - Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Otolaryngology Head and Neck Surgery, Central Adelaide Health Network, Adelaide, Australia
| |
Collapse
|
8
|
Meng D, Zhu C, Jia R, Li Z, Wang W, Song S. The molecular mechanism of ferroptosis and its role in COPD. Front Med (Lausanne) 2023; 9:1052540. [PMID: 36687445 PMCID: PMC9852995 DOI: 10.3389/fmed.2022.1052540] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Ferroptosis, a new type of cell death, is mainly characterized by intracellular iron accumulation and lipid peroxidation. The complex regulatory network of iron metabolism, lipid metabolism, amino acid metabolism, p53-related signaling, and Nrf2-related signaling factors is involved in the entire process of ferroptosis. It has been reported that ferroptosis is involved in the pathogenesis of neurological diseases, cancer, and ischemia-reperfusion injury. Recent studies found that ferroptosis is closely related to the pathogenesis of COPD, which, to some extent, indicates that ferroptosis is a potential therapeutic target for COPD. This article mainly discusses the related mechanisms of ferroptosis, including metabolic regulation and signaling pathway regulation, with special attention to its role in the pathogenesis of COPD, aiming to provide safe and effective therapeutic targets for chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Dandan Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengfeng Zhu
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Jia
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zongxin Li
- Department of Second Department of Haematology, Jinan Haematology Hospital, Jinan, China
| | - Wantao Wang
- Department of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Wantao Wang ✉
| | - Suhua Song
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China,Suhua Song ✉
| |
Collapse
|
9
|
Khorsandi K, Hosseinzadeh R, Esfahani H, Zandsalimi K, Shahidi FK, Abrahamse H. Accelerating skin regeneration and wound healing by controlled ROS from photodynamic treatment. Inflamm Regen 2022; 42:40. [PMID: 36192814 PMCID: PMC9529607 DOI: 10.1186/s41232-022-00226-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular metabolisms produce reactive oxygen species (ROS) which are essential for cellular signaling pathways and physiological functions. Nevertheless, ROS act as “double-edged swords” that have an unstable redox balance between ROS production and removal. A little raise of ROS results in cell proliferation enhancement, survival, and soft immune responses, while a high level of ROS could lead to cellular damage consequently protein, nucleic acid, and lipid damages and finally cell death. ROS play an important role in various pathological circumstances. On the contrary, ROS can show selective toxicity which is used against cancer cells and pathogens. Photodynamic therapy (PDT) is based on three important components including a photosensitizer (PS), oxygen, and light. Upon excitation of the PS at a specific wavelength, the PDT process begins which leads to ROS generation. ROS produced during PDT could induce two different pathways. If PDT produces control and low ROS, it can lead to cell proliferation and differentiation. However, excess production of ROS by PDT causes cellular photo damage which is the main mechanism used in cancer treatment. This review summarizes the functions of ROS in living systems and describes role of PDT in production of controllable ROS and finally a special focus on current ROS-generating therapeutic protocols for regeneration and wound healing.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran. .,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20037, USA.
| | - Reza Hosseinzadeh
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Academic center for education, culture and research, Urmia, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Kavosh Zandsalimi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Fedora Khatibi Shahidi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, 2028, South Africa
| |
Collapse
|
10
|
Emerging Roles of the Iron Chelators in Inflammation. Int J Mol Sci 2022; 23:ijms23147977. [PMID: 35887336 PMCID: PMC9318075 DOI: 10.3390/ijms23147977] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a crucial element for mammalian cells, considering its intervention in several physiologic processes. Its homeostasis is finely regulated, and its alteration could be responsible for the onset of several disorders. Iron is closely related to inflammation; indeed, during inflammation high levels of interleukin-6 cause an increased production of hepcidin which induces a degradation of ferroportin. Ferroportin degradation leads to decreased iron efflux that culminates in elevated intracellular iron concentration and consequently iron toxicity in cells and tissues. Therefore, iron chelation could be considered a novel and useful therapeutic strategy in order to counteract the inflammation in several autoimmune and inflammatory diseases. Several iron chelators are already known to have anti-inflammatory effects, among them deferiprone, deferoxamine, deferasirox, and Dp44mT are noteworthy. Recently, eltrombopag has been reported to have an important role in reducing inflammation, acting both directly by chelating iron, and indirectly by modulating iron efflux. This review offers an overview of the possible novel biological effects of the iron chelators in inflammation, suggesting them as novel anti-inflammatory molecules.
Collapse
|
11
|
Wiegand C, Hipler UC, Elsner P, Tittelbach J. Keratinocyte and Fibroblast Wound Healing In Vitro Is Repressed by Non-Optimal Conditions but the Reparative Potential Can Be Improved by Water-Filtered Infrared A. Biomedicines 2021; 9:biomedicines9121802. [PMID: 34944618 PMCID: PMC8698951 DOI: 10.3390/biomedicines9121802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
It is a general goal to improve wound healing, especially of chronic wounds. As light therapy has gained increasing attention, the positive influence on healing progression of water-filtered infrared A (wIRA), a special form of thermal radiation, has been investigated and compared to the detrimental effects of UV-B irradiation on wound closure in vitro. Models of keratinocyte and fibroblast scratches help to elucidate effects on epithelial and dermal healing. This study further used the simulation of non-optimal settings such as S. aureus infection, chronic inflammation, and anti-inflammatory conditions to determine how these affect scratch wound progression and whether wIRA treatment can improve healing. Gene expression analysis for cytokines (IL1A, IL6, CXCL8), growth (TGFB1, PDGFC) and transcription factors (NFKB1, TP53), heat shock proteins (HSP90AA1, HSPA1A, HSPD1), keratinocyte desmogleins (DSG1, DSG3), and fibroblast collagen (COL1A1, COL3A1) was performed. Keratinocyte and fibroblast wound healing under non-optimal conditions was found to be distinctly reduced in vitro. wIRA treatment could counteract the inflammatory response in infected keratinocytes as well as under chronic inflammatory conditions by decreasing pro-inflammatory cytokine gene expression and improve wound healing. In contrast, in the anti-inflammatory setting, wIRA radiation could re-initiate the acute inflammatory response necessary after injury to stimulate the regenerative processes and advance scratch closure.
Collapse
|
12
|
Zhou S, Wang Q, Huang A, Fan H, Yan S, Zhang Q. Advances in Skin Wound and Scar Repair by Polymer Scaffolds. Molecules 2021; 26:6110. [PMID: 34684690 PMCID: PMC8541489 DOI: 10.3390/molecules26206110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Scars, as the result of abnormal wound-healing response after skin injury, may lead to loss of aesthetics and physical dysfunction. Current clinical strategies, such as surgical excision, laser treatment, and drug application, provide late remedies for scarring, yet it is difficult to eliminate scars. In this review, the functions, roles of multiple polymer scaffolds in wound healing and scar inhibition are explored. Polysaccharide and protein scaffolds, an analog of extracellular matrix, act as templates for cell adhesion and migration, differentiation to facilitate wound reconstruction and limit scarring. Stem cell-seeded scaffolds and growth factors-loaded scaffolds offer significant bioactive substances to improve the wound healing process. Special emphasis is placed on scaffolds that continuously release oxygen, which greatly accelerates the vascularization process and ensures graft survival, providing convincing theoretical support and great promise for scarless healing.
Collapse
Affiliation(s)
| | | | | | | | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (S.Z.); (Q.W.); (A.H.); (H.F.)
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (S.Z.); (Q.W.); (A.H.); (H.F.)
| |
Collapse
|
13
|
Ogi K, Ramezanpour M, Liu S, Ferdoush Tuli J, Bennett C, Suzuki M, Fujieda S, Psaltis AJ, Wormald PJ, Vreugde S. Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:692049. [PMID: 35387029 PMCID: PMC8974687 DOI: 10.3389/falgy.2021.692049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background:Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air–liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Mahnaz Ramezanpour
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sha Liu
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Jannatul Ferdoush Tuli
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Catherine Bennett
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Masanobu Suzuki
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Alkis James Psaltis
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Peter-John Wormald
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
| | - Sarah Vreugde
- Department of Surgery–Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, SA, Australia
- Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Basil Hetzel Institute for Translational Health Research, Woodville South, SA, Australia
- *Correspondence: Sarah Vreugde
| |
Collapse
|
14
|
Qu M, Zhang H, Chen Z, Sun X, Zhu S, Nan K, Chen W, Miao C. The Role of Ferroptosis in Acute Respiratory Distress Syndrome. Front Med (Lausanne) 2021; 8:651552. [PMID: 34026785 PMCID: PMC8137978 DOI: 10.3389/fmed.2021.651552] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/12/2021] [Indexed: 01/15/2023] Open
Abstract
Ferroptosis is a newly discovered type of regulated cell death that is different from apoptosis, necrosis and autophagy. Ferroptosis is characterized by iron-dependent lipid peroxidation, which induces cell death. Iron, lipid and amino acid metabolism is associated with ferroptosis. Ferroptosis is involved in the pathological development of various diseases, such as neurological diseases and cancer. Recent studies have shown that ferroptosis is also closely related to acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS), suggesting that it can be a novel therapeutic target. This article mainly introduces the metabolic mechanism related to ferroptosis and discusses its role in ALI/ARDS to provide new ideas for the treatment of these diseases.
Collapse
Affiliation(s)
- Mengdi Qu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingfeng Sun
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Nan
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Vediappan RS, Bennett C, Cooksley C, Finnie J, Trochsler M, Quarrington RD, Jones CF, Bassiouni A, Moratti S, Psaltis AJ, Maddern G, Vreugde S, Wormald PJ. Prevention of adhesions post-abdominal surgery: Assessing the safety and efficacy of Chitogel with Deferiprone in a rat model. PLoS One 2021; 16:e0244503. [PMID: 33444337 PMCID: PMC7808615 DOI: 10.1371/journal.pone.0244503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/10/2020] [Indexed: 12/05/2022] Open
Abstract
Introduction Adhesions are often considered to be an inevitable consequence of abdominal and pelvic surgery, jeopardizing the medium and long-term success of these procedures. Numerous strategies have been tested to reduce adhesion formation, however, to date, no surgical or medical therapeutic approaches have been successful in its prevention. This study demonstrates the safety and efficacy of Chitogel with Deferiprone and/or antibacterial Gallium Protoporphyrin in different concentrations in preventing adhesion formation after abdominal surgery. Materials and methods 112 adult (8–10 week old) male Wistar albino rats were subjected to midline laparotomy and caecal abrasion, with 48 rats having an additional enterotomy and suturing. Kaolin (0.005g/ml) was applied to further accelerate adhesion formation. The abrasion model rats were randomized to receive saline, Chitogel, or Chitogel plus Deferiprone (5, 10 or 20 mM), together with Gallium Protoporphyrin (250μg/mL). The abrasion with enterotomy rats were randomised to receive saline, Chitogel or Chitogel with Deferiprone (1 or 5 mM). At day 21, rats were euthanised, and adhesions graded macroscopically and microscopically; the tensile strength of the repaired caecum was determined by an investigator blinded to the treatment groups. Results Chitogel with Deferiprone 5 mM significantly reduced adhesion formation (p<0.01) when pathologically assessed in a rat abrasion model. Chitogel with Deferiprone 5 mM and 1 mM also significantly reduced adhesions (p<0.05) after abrasion with enterotomy. Def-Chitogel 1mM treatment did not weaken the enterotomy site with treated sites having significantly better tensile strength compared to control saline treated enterotomy rats. Conclusions Chitogel with Deferiprone 1 mM constitutes an effective preventative anti-adhesion barrier after abdominal surgery in a rat model. Moreover, this therapeutic combination of agents is safe and does not weaken the healing of the sutured enterotomy site.
Collapse
Affiliation(s)
- Rajan Sundaresan Vediappan
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - Catherine Bennett
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - Clare Cooksley
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - John Finnie
- SA Pathology and Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Markus Trochsler
- Department of Surgery, The University of Adelaide, Adelaide, Australia
| | - Ryan D. Quarrington
- Adelaide Spinal Research Group, Centre for Orthopaedic and Trauma Research, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Claire F. Jones
- Adelaide Spinal Research Group, Centre for Orthopaedic and Trauma Research, Adelaide Medical School, University of Adelaide, Adelaide, Australia
- School of Mechanical Engineering, University of Adelaide, Adelaide, Australia
| | - Ahmed Bassiouni
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - Stephen Moratti
- Department of Chemistry, Otago University, Dunedin, New Zealand
| | - Alkis J. Psaltis
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - Guy Maddern
- Department of Surgery, The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
| | - P. J. Wormald
- Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, Australia
- * E-mail:
| |
Collapse
|
16
|
Chou YR, Lo WC, Dubey NK, Lu JH, Liu HY, Tsai CY, Deng YH, Wu CM, Huang MS, Deng WP. Platelet-derived biomaterials-mediated improvement of bone injury through migratory ability of embryonic fibroblasts: in vitro and in vivo evidence. Aging (Albany NY) 2021; 13:3605-3617. [PMID: 33461165 PMCID: PMC7906152 DOI: 10.18632/aging.202311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
Bony injuries lead to compromised skeletal functional ability which further increase in aging population due to decreased bone mineral density. Therefore, we aimed to investigate the therapeutic potential of platelet-derived biomaterials (PDB) against bone injury. Specifically, we assessed the impact of PDB on osteo-inductive characteristics and migration of mouse embryonic fibroblasts (MEFs). Osteogenic lineage, matrix mineralization and cell migration were determined by gene markers (RUNX2, OPN and OCN), alizarin Red S staining, and migration markers (FAK, pFAK and Src) and EMT markers, respectively. The therapeutic impact of TGF-β1, a key component of PDB, was confirmed by employing inhibitor of TGF-β receptor I (Ti). Molecular imaging-based in vivo cellular migration in mice was determined by establishing bone injury at right femurs. Results showed that PDB markedly increased expression of osteogenic markers, matrix mineralization, migration and EMT markers, revealing higher osteogenic and migratory potential of PDB-treated MEFs. In vivo cell migration was manifested by expression of migratory factors, SDF-1 and CXCR4. Compared to control, PDB-treated mice exhibited higher bone density and volume. Ti treatment inhibited both migration and osteogenic potential of MEFs, affirming impact of TGF-β1. Collectively, our study clearly indicated PDB-rescued bone injury through enhancing migratory potential of MEFs and osteogenesis.
Collapse
Affiliation(s)
- Yen-Ru Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wen-Cheng Lo
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Navneet Kumar Dubey
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hua Lu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hen-Yu Liu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Yu Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yue-Hua Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Ming Wu
- Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mao-Suan Huang
- Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Win-Ping Deng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Stem Cell Research Center, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, Taipei, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan
| |
Collapse
|
17
|
Gouzos M, Ramezanpour M, Bassiouni A, Psaltis AJ, Wormald PJ, Vreugde S. Antibiotics Affect ROS Production and Fibroblast Migration in an In-vitro Model of Sinonasal Wound Healing. Front Cell Infect Microbiol 2020; 10:110. [PMID: 32266162 PMCID: PMC7096545 DOI: 10.3389/fcimb.2020.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/28/2020] [Indexed: 01/17/2023] Open
Abstract
Introduction: Antibiotics are often administered to patients perioperatively and have been shown to affect ROS production of nasal cells in vitro, but their effect in the setting of active wound healing remains unclear. Reactive oxygen species (ROS) are known to play a significant role in wound healing. This study analyzed a broad array of antibiotics used after sinus surgery to assess their effect on wound healing and ROS production in vitro. It was hypothesized that ROS production would be affected by these antibiotics and there would be a negative relationship between ROS activity and cell migration speed. Methods: Monolayers of primary human nasal epithelial cells (HNEC) and primary fibroblasts were disrupted with a linear wound, treated with 10 different antibiotics or a ROS inhibitor and observed over 36 h in a controlled environment using confocal microscopy. ROS activity and migration speed of the wound edge were measured at regular intervals. The relationship between the two parameters was analyzed using mixed linear modeling. Results: Performing a linear scratch over the cell monolayers produced an immediate increase in ROS production of ~35% compared to unscratched controls in both cell types. Incubation with mitoquinone and the oxazolidinone antibiotic linezolid inhibited ROS activity in both fibroblasts and HNEC in association with slowed fibroblast cell migration (p < 0.05). Fibroblast cell migration was also reduced in the presence of clarithromycin and mupirocin (p < 0.05). A significant correlation was seen between ROS suppression and cell migration rate in fibroblasts for mitoquinone and all antibiotics except for azithromycin and doxycycline, where no clear relationship was seen. Treatments that slowed fibroblast cell migration compared to untreated controls showed a significant correlation with ROS suppression (p < 0.05). Conclusion: Increased ROS production in freshly wounded HNEC and fibroblast cell monolayers was suppressed in the presence of antibiotics, in correlation with reduced fibroblast cell migration. In contrast, HNEC cell migration was not significantly affected by any of the antibiotics tested. This differential effect of antibiotics on fibroblast and HNEC migration might have clinical relevance by reducing adhesion formation without affecting epithelial healing in the postoperative setting.
Collapse
Affiliation(s)
- Michael Gouzos
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Ahmed Bassiouni
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Alkis J Psaltis
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - P J Wormald
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| | - Sarah Vreugde
- Department of Surgery - Otorhinolaryngology Head and Neck Surgery, The Queen Elizabeth Hospital and the University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Prevention of peridural adhesions in spinal surgery: Assessing safety and efficacy of Chitogel with Deferiprone in a sheep model. J Clin Neurosci 2020; 72:378-385. [PMID: 31948884 DOI: 10.1016/j.jocn.2019.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Spinal laminectomy is a common procedure performed to relieve neural compression in patients suffering from myelopathy or radiculopathy. However, up to 40% of patients suffer from persistent post-operative pain and disability, a condition known as Failed Back Surgery Syndrome (FBSS). Excessive scarring in the surgical bed is implicated as a cause. Hydrogels have been proposed to prevent adhesion formation post-laminectomy; however, their efficacy has not been proven. This study uses Chitogel complexed with the iron chelator Deferiprone (Def) to prevent adhesion formation in a sheep laminectomy model. MATERIAL & METHODS Fifteen Adult Merino sheep (Ovis Aries, 1-5 yrs old) underwent laminectomy at lumbar levels 1-5 and had hydrated aluminum silicate (kaolin) applied to promote adhesion formation. Subjects were randomised to receive at each laminectomy level no-treatment control, Chitogel, Chitogel with Def at 20 mM or 40 mM or Carboxy-methyl-cellulose and Polyethylene oxide (CMC/PEO) gel. The animals were recovered for 3 months post-surgery, followed by assessment with Magnetic Resonance Imaging (MRI) and histopathology of the spinal tissues for evaluating the presence and extent of adhesions. RESULTS MRI and Histology assessment indicated that Kaolin induced severe inflammation with adhesion formation. Chitogel with and without 20 mM Def decreased inflammation (p < 0.01) and trended to reduce adhesions (p < 0.1). Chitogel with Def 40 mM was not significantly dis-similar to CMC/PEO and did not reduce inflammation or adhesions compared to no-treatment control. CONCLUSION Chitogel in combination with Def 20 mM is safe and effective in decreasing the inflammatory process and may possibly reduce post-operative adhesions following laminectomy.
Collapse
|