1
|
Sojakova D, Husakova J, Fejfarova V, Nemcova A, Jarosikova R, Kopp S, Lovasova V, Jude EB, Dubsky M. The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia. Int J Mol Sci 2024; 25:10184. [PMID: 39337669 PMCID: PMC11431855 DOI: 10.3390/ijms251810184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Autologous cell therapy (ACT) is primarily used in diabetic patients with chronic limb-threatening ischemia (CLTI) who are not candidates for standard revascularization. According to current research, this therapy has been shown in some studies to be effective in improving ischemia parameters, decreasing the major amputation rate, and in foot ulcer healing. This review critically evaluates the efficacy of ACT in patients with no-option CLTI, discusses the use of mononuclear and mesenchymal stem cells, and compares the route of delivery of ACT. In addition to ACT, we also describe the use of new revascularization strategies, e.g., nanodiscs, microbeads, and epigenetics, that could enhance the therapeutic effect. The main aim is to summarize new findings on subcellular and molecular levels with the clinical aspects of ACT.
Collapse
Affiliation(s)
- Dominika Sojakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Jitka Husakova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| | - Vladimira Fejfarova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Andrea Nemcova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Radka Jarosikova
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Simon Kopp
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
| | - Veronika Lovasova
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
- Second Faculty of Medicine, Charles University, 15006 Prague, Czech Republic
| | - Edward B. Jude
- Diabetes Center, Tameside and Glossop Integrated Care NHS Foundation Trust, Ashton-under-Lyne OL6 9RW, UK;
- Department of Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
| | - Michal Dubsky
- Diabetes Centre, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (D.S.); (J.H.); (V.F.); (A.N.); (R.J.); (S.K.)
- First Faculty of Medicine, Charles University, 14021 Prague, Czech Republic
| |
Collapse
|
2
|
Liu Y, Lyons CJ, Ayu C, O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: challenges and clinical prospects. Front Endocrinol (Lausanne) 2024; 15:1396794. [PMID: 39076517 PMCID: PMC11284052 DOI: 10.3389/fendo.2024.1396794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia, leading to various vascular complications. Accumulating evidence indicates that endothelial colony-forming cells (ECFCs) have attractive prospects for repairing and restoring blood vessels. Thus, ECFCs may be a novel therapeutic option for diabetic patients with vascular complications who require revascularization therapy. However, it has been reported that the function of ECFCs is impaired in DM, which poses challenges for the autologous transplantation of ECFCs. In this review, we summarize the molecular mechanisms that may be responsible for ECFC dysfunction and discuss potential strategies for improving the therapeutic efficacy of ECFCs derived from patients with DM. Finally, we discuss barriers to the use of ECFCs in human studies in light of the fact that there are no published reports using these cells in humans.
Collapse
Affiliation(s)
| | | | | | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Xu S, Zhao L, Li Y, Gu X, Liu Z, Han X, Li W, Ma W. Activating the healing process: three-dimensional culture of stem cells in Matrigel for tissue repair. BMC Biotechnol 2024; 24:36. [PMID: 38796454 PMCID: PMC11128131 DOI: 10.1186/s12896-024-00862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.
Collapse
Affiliation(s)
- Shukui Xu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Liru Zhao
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Yinghui Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xiuge Gu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Ziyang Liu
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Xing Han
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wenwen Li
- Department of Orthodontics, Hebei Key Laboratory of Stomatology, Hebei Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Hebei Medical University, Shijiahzuang, 050017, China
| | - Wensheng Ma
- Department of Orthodontics, School of Medicine, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300041, China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin, 300041, China.
| |
Collapse
|
4
|
Liu Y, Lyons CJ, Ayu C, O'Brien T. Recent advances in endothelial colony-forming cells: from the transcriptomic perspective. J Transl Med 2024; 22:313. [PMID: 38532420 PMCID: PMC10967123 DOI: 10.1186/s12967-024-05108-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Endothelial colony-forming cells (ECFCs) are progenitors of endothelial cells with significant proliferative and angiogenic ability. ECFCs are a promising treatment option for various diseases, such as ischemic heart disease and peripheral artery disease. However, some barriers hinder the clinical application of ECFC therapeutics. One of the current obstacles is that ECFCs are dysfunctional due to the underlying disease states. ECFCs exhibit dysfunctional phenotypes in pathologic states, which include but are not limited to the following: premature neonates and pregnancy-related diseases, diabetes mellitus, cancers, haematological system diseases, hypoxia, pulmonary arterial hypertension, coronary artery diseases, and other vascular diseases. Besides, ECFCs are heterogeneous among donors, tissue sources, and within cell subpopulations. Therefore, it is important to elucidate the underlying mechanisms of ECFC dysfunction and characterize their heterogeneity to enable clinical application. In this review, we summarize the current and potential application of transcriptomic analysis in the field of ECFC biology. Transcriptomic analysis is a powerful tool for exploring the key molecules and pathways involved in health and disease and can be used to characterize ECFC heterogeneity.
Collapse
Affiliation(s)
- Yaqiong Liu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Christine Ayu
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), Biomedical Sciences Building, University of Galway, Galway, Ireland.
| |
Collapse
|
5
|
Ng CY, Cheung C. Origins and functional differences of blood endothelial cells. Semin Cell Dev Biol 2024; 155:23-29. [PMID: 37202277 DOI: 10.1016/j.semcdb.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
The interests in blood endothelial cells arise from their therapeutic potential in vascular repair and regeneration. Our understanding of blood endothelial cells that exist in the circulation has been evolving significantly from the original concept of endothelial progenitor cells. Many studies have uncovered heterogeneities of blood endothelial subtypes where some cells express both endothelial and hematopoietic antigens, and others possess either mature or immature endothelial markers. Due to the lack of definitive cell marker identities, there have been momentums in the field to adopt a technical-oriented labeling system based on the cells' involvement in postnatal neovascularization and cell culture derivatives. Our review streamlines nomenclatures for blood endothelial subtypes and standardizes understanding of their functional differences. Broadly, we will discuss about myeloid angiogenic cells (MACs), endothelial colony-forming cells (ECFCs), blood outgrowth endothelial cells (BOECs) and circulating endothelial cells (CECs). The strategic location of blood endothelial cells confers them essential roles in supporting physiological processes. MACs exert angiogenic effects through paracrine mechanisms, while ECFCs are recruited to sites of vascular injury to participate directly in new vessel formation. BOECs are an in vitro derivative of ECFCs. CECs are shed into the bloodstream from damaged vessels, hence reflective of endothelial dysfunction. With clarity on the functional attributes of blood endothelial subtypes, we present recent advances in their applications in disease modelling, along with serving as biomarkers of vascular tissue homeostasis.
Collapse
Affiliation(s)
- Chun-Yi Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore.
| |
Collapse
|
6
|
Sidgwick GP, Weston R, Mahmoud AM, Schiro A, Serracino-Inglott F, Tandel SM, Skeoch S, Bruce IN, Jones AM, Alexander MY, Wilkinson FL. Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway. Cells 2024; 13:312. [PMID: 38391925 PMCID: PMC10887290 DOI: 10.3390/cells13040312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.
Collapse
Affiliation(s)
- Gary P. Sidgwick
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ria Weston
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Ayman M. Mahmoud
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Andrew Schiro
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Ferdinand Serracino-Inglott
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- Cardiovascular Research Institute, University of Manchester, Manchester M13 9PL, UK;
- Vascular Unit, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
| | - Shikha M. Tandel
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Sarah Skeoch
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
- Royal National Hospital for Rheumatic Diseases, Bath BA1 1RL, UK
| | - Ian N. Bruce
- Centre for Epidemiology Versus Arthritis, University of Manchester, Manchester M13 9PL, UK; (S.S.); (I.N.B.)
- National Institute for Health Research Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Alan M. Jones
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
- School of Pharmacy, University of Birmingham, Birmingham B15 2TT, UK
| | - M. Yvonne Alexander
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| | - Fiona L. Wilkinson
- Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK (R.W.); (A.M.M.); (F.S.-I.); (S.M.T.); (A.M.J.); (M.Y.A.)
| |
Collapse
|
7
|
O'Neill KM, Grieve DJ. Targeted Mobilisation of Endogenous Endothelial Progenitor Cells - an Alternate Approach to Allogeneic Therapy for Ischaemic Cardiovasular Disease? Cardiovasc Drugs Ther 2023; 37:839-841. [PMID: 37133551 DOI: 10.1007/s10557-023-07462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Affiliation(s)
- Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7AE, UK.
| |
Collapse
|
8
|
Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022; 5:635. [PMID: 35768543 PMCID: PMC9243106 DOI: 10.1038/s42003-022-03578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine. Drug-loaded liposomal nanoparticles conjugated to endothelial colony-forming cells can improve the vasculogenic potential of vascular progenitor cells exposed to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shanique Edwards
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kellen Round
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Owen
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pietro Sainaghi
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Siyuan Zhang
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura S Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
9
|
Exploring Endothelial Colony-Forming Cells to Better Understand the Pathophysiology of Disease: An Updated Review. Stem Cells Int 2022; 2022:4460041. [PMID: 35615696 PMCID: PMC9126670 DOI: 10.1155/2022/4460041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial cell (EC) dysfunction has been implicated in a variety of pathological conditions. The collection of ECs from patients is typically conducted postmortem or through invasive procedures, such as surgery and interventional procedures, hampering efforts to clarify the role of ECs in disease onset and progression. In contrast, endothelial colony-forming cells (ECFCs), also termed late endothelial progenitor cells, late outgrowth endothelial cells, blood outgrowth endothelial cells, or endothelial outgrowth cells, are obtained in a minimally invasive manner, namely, by the culture of human peripheral blood mononuclear cells in endothelial growth medium. ECFCs resemble mature ECs phenotypically, genetically, and functionally, making them excellent surrogates for ECs. Numerous studies have been performed that examined ECFC function in conditions such as coronary artery disease, diabetes mellitus, hereditary hemorrhagic telangiectasia, congenital bicuspid aortic valve disease, pulmonary arterial hypertension, venous thromboembolic disease, and von Willebrand disease. Here, we provide an updated review of studies using ECFCs that were performed to better understand the pathophysiology of disease. We also discuss the potential of ECFCs as disease biomarkers and the standardized methods to culture, quantify, and evaluate ECFCs and suggest the future direction of research in this field.
Collapse
|
10
|
Alshehri JA, Gill DM, Jones AM. A Sulfuryl Group Transfer Strategy to Selectively Prepare Sulfated Steroids and Isotopically Labelled Derivatives. Front Mol Biosci 2022; 8:776900. [PMID: 35004848 PMCID: PMC8740147 DOI: 10.3389/fmolb.2021.776900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of common steroids: estrone, estradiol, cortisol, and pregnenolone with tributylsulfoammonium betaine (TBSAB) provides a convenient chemoselective conversion of the steroids alcohol/phenol moiety to the corresponding steroidal organosulfate. An important feature of the disclosed methodology is the millimolar scale of the reaction, and the isolation of the corresponding steroid sulfates as their biologically relevant sodium salts without the need for ion-exchange chromatography. The scope of the method was further explored in the estradiol and pregnanediol steroid systems with the bis-sulfated derivatives. Ultimately, a method to install an isotopic label, deuterium (2H) combined with estrone sulfation is a valuable tool for its mass-spectrometric quantification in biological studies.
Collapse
Affiliation(s)
- Jaber A Alshehri
- Molecular Synthesis Laboratory, School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Daniel M Gill
- Molecular Synthesis Laboratory, School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Alan M Jones
- Molecular Synthesis Laboratory, School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
11
|
Endothelial Progenitor Cells Dysfunctions and Cardiometabolic Disorders: From Mechanisms to Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22136667. [PMID: 34206404 PMCID: PMC8267891 DOI: 10.3390/ijms22136667] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of several disorders, such as hypertension, central obesity, dyslipidemia, hyperglycemia, insulin resistance and non-alcoholic fatty liver disease. Despite health policies based on the promotion of physical exercise, the reduction of calorie intake and the consumption of healthy food, there is still a global rise in the incidence and prevalence of MetS in the world. This phenomenon can partly be explained by the fact that adverse events in the perinatal period can increase the susceptibility to develop cardiometabolic diseases in adulthood. Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing cardiovascular diseases (CVD) and metabolic disorders later in life. It has been shown that alterations in the structural and functional integrity of the endothelium can lead to the development of cardiometabolic diseases. The endothelial progenitor cells (EPCs) are circulating components of the endothelium playing a major role in vascular homeostasis. An association has been found between the maintenance of endothelial structure and function by EPCs and their ability to differentiate and repair damaged endothelial tissue. In this narrative review, we explore the alterations of EPCs observed in individuals with cardiometabolic disorders, describe some mechanisms related to such dysfunction and propose some therapeutical approaches to reverse the EPCs dysfunction.
Collapse
|
12
|
Gill DM, R Povinelli AP, Zazeri G, Shamir SA, Mahmoud AM, Wilkinson FL, Alexander MY, L Cornelio M, Jones AM. The modulatory role of sulfated and non-sulfated small molecule heparan sulfate-glycomimetics in endothelial dysfunction: absolute structural clarification, molecular docking and simulated dynamics, SAR analyses and ADMET studies. RSC Med Chem 2021; 12:779-790. [PMID: 34124676 PMCID: PMC8152814 DOI: 10.1039/d0md00366b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
The conceptual technology of small molecule glycomimetics, exemplified by compounds C1-4, has shown promising protective effects against lipid-induced endothelial dysfunction, restorative effects on diabetic endothelial colony forming cells, and preventative effects on downstream vascular calcification amongst other important in vitro and ex vivo studies. We report the optimised synthesis of an array of 17 small molecule glycomimetics, including the regio-, enantio- and diastereo-meric sulfated scaffolds of a hit structure along with novel desulfated examples. For the first time, the absolute stereochemical configurations of C1-4 have been clarified based on an identified and consistent anomaly with the Sharpless asymmetric dihydroxylation reaction. We have investigated the role and importance of sulfation pattern, location, regioisomers, and spatial orientation of distal sulfate groups on the modulation of endothelial dysfunction through their interaction with hepatocyte growth factor (HGF). In silico studies demonstrated the key interactions the persulfated glycomimetics make with HGF and revealed the importance of both sulfate density and positioning (both point chirality and vector) to biological activity. In vitro biological data of the most efficient binding motifs, along with desulfated comparators, support the modulatory effects of sulfated small molecule glycomimetics in the downstream signaling cascade of endothelial dysfunction. In vitro absorption, distribution, metabolism, elimination and toxicity (ADMET) data demonstrate the glycomimetic approach to be a promising approach for hit-to-lead studies.
Collapse
Affiliation(s)
- Daniel M Gill
- School of Pharmacy, University of Birmingham Edgbaston B15 2TT UK +44(0)121 414 7288
| | - Ana Paula R Povinelli
- School of Pharmacy, University of Birmingham Edgbaston B15 2TT UK +44(0)121 414 7288
- Departamento de Física - IBILCE Rua Cristovão Colombo 2265 CEP 15054-000 São José do Rio Preto São Paulo Brazil
| | - Gabriel Zazeri
- School of Pharmacy, University of Birmingham Edgbaston B15 2TT UK +44(0)121 414 7288
- Departamento de Física - IBILCE Rua Cristovão Colombo 2265 CEP 15054-000 São José do Rio Preto São Paulo Brazil
| | - Sabrina A Shamir
- Department of Natural Sciences, Manchester Metropolitan University M1 5GD UK
| | - Ayman M Mahmoud
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University Egypt
- Department of Endocrinology, Diabetes & Nutrition, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin Berlin Germany
- Centre for Biomedicine, Manchester Metropolitan University M1 5GD UK
| | - Fiona L Wilkinson
- Centre for Biomedicine, Manchester Metropolitan University M1 5GD UK
| | | | - Marinonio L Cornelio
- Departamento de Física - IBILCE Rua Cristovão Colombo 2265 CEP 15054-000 São José do Rio Preto São Paulo Brazil
| | - Alan M Jones
- School of Pharmacy, University of Birmingham Edgbaston B15 2TT UK +44(0)121 414 7288
| |
Collapse
|
13
|
Jones AM. Dialling-In New Reactivity into the Shono-Type Anodic Oxidation Reaction. CHEM REC 2020; 21:2120-2129. [PMID: 33146948 DOI: 10.1002/tcr.202000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/08/2022]
Abstract
This Personal Account describes the author's groups' research in the field of electrosynthetic anodic oxidation, beginning with initial trial and error attempts with the Shono oxidation. Early setbacks with complex rotameric amide mixtures, provided the ideal environment for the discovery of the Oxa-Shono reaction-Osp 2 -Csp 3 bond cleavage of esters-providing two useful products in one-step: aldehyde selective oxidation level products and a mild de-esterification method to afford carboxylic acids in the process. The development of the Oxa-Shono reaction provided the impetus for the discovery of other electrically propelled-Nsp 2 -Csp 2 and Nsp 2 -Csp 3 -bond breaking reactions in bioactive amide and sulfonamide systems. Understanding the voltammetric behaviour of the molecule under study, switching between controlled current- or controlled potential- electrolysis, and restricting electron flow (the reagent), affords exquisite control over the reaction outcomes in batch and flow. Importantly, this bio-inspired advance in electrosynthetic dealkylation chemistry mimics the metabolic outcomes observed in nature.
Collapse
Affiliation(s)
- Alan M Jones
- School of Pharmacy, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
14
|
Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve their Regenerative Efficacy. Int J Mol Sci 2020; 21:ijms21197406. [PMID: 33036489 PMCID: PMC7582994 DOI: 10.3390/ijms21197406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) comprises a range of major clinical cardiac and circulatory diseases, which produce immense health and economic burdens worldwide. Currently, vascular regenerative surgery represents the most employed therapeutic option to treat ischemic disorders, even though not all the patients are amenable to surgical revascularization. Therefore, more efficient therapeutic approaches are urgently required to promote neovascularization. Therapeutic angiogenesis represents an emerging strategy that aims at reconstructing the damaged vascular network by stimulating local angiogenesis and/or promoting de novo blood vessel formation according to a process known as vasculogenesis. In turn, circulating endothelial colony-forming cells (ECFCs) represent truly endothelial precursors, which display high clonogenic potential and have the documented ability to originate de novo blood vessels in vivo. Therefore, ECFCs are regarded as the most promising cellular candidate to promote therapeutic angiogenesis in patients suffering from CVD. The current briefly summarizes the available information about the origin and characterization of ECFCs and then widely illustrates the preclinical studies that assessed their regenerative efficacy in a variety of ischemic disorders, including acute myocardial infarction, peripheral artery disease, ischemic brain disease, and retinopathy. Then, we describe the most common pharmacological, genetic, and epigenetic strategies employed to enhance the vasoreparative potential of autologous ECFCs by manipulating crucial pro-angiogenic signaling pathways, e.g., extracellular-signal regulated kinase/Akt, phosphoinositide 3-kinase, and Ca2+ signaling. We conclude by discussing the possibility of targeting circulating ECFCs to rescue their dysfunctional phenotype and promote neovascularization in the presence of CVD.
Collapse
|
15
|
Abstract
Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difficult to prepare and purify. We report an operationally simple, double ion-exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents. Hence, in response to an increasing demand for complementary methods to synthesise organosulfates, we developed an alternative sulfation route based on an inexpensive, molecularly efficient and solubilising cation exchanging method using off-the-shelf reagents. The disclosed method is amenable to a range of differentially substituted benzyl alcohols, benzylamines and aniline and can also be performed at low temperature for sensitive substrates in good to excellent isolated yield.
Collapse
|
16
|
Russell-Hallinan A, Watson CJ, O'Dwyer D, Grieve DJ, O'Neill KM. Epigenetic Regulation of Endothelial Cell Function by Nucleic Acid Methylation in Cardiac Homeostasis and Disease. Cardiovasc Drugs Ther 2020; 35:1025-1044. [PMID: 32748033 PMCID: PMC8452583 DOI: 10.1007/s10557-020-07019-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pathological remodelling of the myocardium, including inflammation, fibrosis and hypertrophy, in response to acute or chronic injury is central in the development and progression of heart failure (HF). While both resident and infiltrating cardiac cells are implicated in these pathophysiological processes, recent evidence has suggested that endothelial cells (ECs) may be the principal cell type responsible for orchestrating pathological changes in the failing heart. Epigenetic modification of nucleic acids, including DNA, and more recently RNA, by methylation is essential for physiological development due to their critical regulation of cellular gene expression. As accumulating evidence has highlighted altered patterns of DNA and RNA methylation in HF at both the global and individual gene levels, much effort has been directed towards defining the precise role of such cell-specific epigenetic changes in the context of HF. Considering the increasingly apparent crucial role that ECs play in cardiac homeostasis and disease, this article will specifically focus on nucleic acid methylation (both DNA and RNA) in the failing heart, emphasising the key influence of these epigenetic mechanisms in governing EC function. This review summarises current understanding of DNA and RNA methylation alterations in HF, along with their specific role in regulating EC function in response to stress (e.g. hyperglycaemia, hypoxia). Improved appreciation of this important research area will aid in further implicating dysfunctional ECs in HF pathogenesis, whilst informing development of EC-targeted strategies and advancing potential translation of epigenetic-based therapies for specific targeting of pathological cardiac remodelling in HF.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Denis O'Dwyer
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - David J Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Karla M O'Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
17
|
Lyons CJ, O’Brien T. The Functionality of Endothelial-Colony-Forming Cells from Patients with Diabetes Mellitus. Cells 2020; 9:cells9071731. [PMID: 32698397 PMCID: PMC7408543 DOI: 10.3390/cells9071731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022] Open
Abstract
Endothelial-colony-forming cells (ECFCs) are a population of progenitor cells which have demonstrated promising angiogenic potential both in vitro and in vivo. However, ECFCs from diabetic patients have been shown to be dysfunctional compared to ECFCs from healthy donors. Diabetes mellitus itself presents with many vascular co-morbidities and it has been hypothesized that ECFCs may be a potential cell therapy option to promote revascularisation in these disorders. While an allogeneic cell therapy approach would offer the potential of an ‘off the shelf’ therapeutic product, to date little research has been carried out on umbilical cord-ECFCs in diabetic models. Alternatively, autologous cell therapy using peripheral blood-ECFCs allows the development of a personalised therapeutic approach to medicine; however, autologous diabetic ECFCs are dysfunctional and need to be repaired so they can effectively treat diabetic co-morbidities. Many different groups have modified autologous diabetic ECFCs to improve their function using a variety of methods including pre-treatment with different factors or with genetic modification. While the in vitro and in vivo data from the literature is promising, no ECFC therapy has proceeded to clinical trials to date, indicating that more research is needed for a potential ECFC therapy in the future to treat diabetic complications.
Collapse
|
18
|
Deutsch MA, Brunner S, Grabmaier U, David R, Ott I, Huber BC. Cardioprotective Potential of Human Endothelial-Colony Forming Cells from Diabetic and Nondiabetic Donors. Cells 2020; 9:cells9030588. [PMID: 32131432 PMCID: PMC7140510 DOI: 10.3390/cells9030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Objective: The potential therapeutic role of endothelial progenitor cells (EPCs) in ischemic heart disease for myocardial repair and regeneration is subject to intense investigation. The aim of the study was to investigate the proregenerative potential of human endothelial colony-forming cells (huECFCs), a very homogenous and highly proliferative endothelial progenitor cell subpopulation, in a myocardial infarction (MI) model of severe combined immunodeficiency (SCID) mice. Methods: CD34+ peripheral blood mononuclear cells were isolated from patient blood samples using immunomagnetic beads. For generating ECFCs, CD34+ cells were plated on fibronectin-coated dishes and were expanded by culture in endothelial-specific cell medium. Either huECFCs (5 × 105) or control medium were injected into the peri-infarct region after surgical MI induction in SCID/beige mice. Hemodynamic function was assessed invasively by conductance micromanometry 30 days post-MI. Hearts of sacrificed animals were analyzed by immunohistochemistry to assess cell fate, infarct size, and neovascularization (huECFCs n = 15 vs. control n = 10). Flow-cytometric analysis of enzymatically digested whole heart tissue was used to analyze different subsets of migrated CD34+/CD45+ peripheral mononuclear cells as well as CD34−/CD45− cardiac-resident stem cells two days post-MI (huECFCs n = 10 vs. control n = 6). Results: Transplantation of human ECFCs after MI improved left ventricular (LV) function at day 30 post-MI (LVEF: 30.43 ± 1.20% vs. 22.61 ± 1.73%, p < 0.001; ΔP/ΔTmax 5202.28 ± 316.68 mmHg/s vs. 3896.24 ± 534.95 mmHg/s, p < 0.05) when compared to controls. In addition, a significantly reduced infarct size (50.3 ± 4.5% vs. 66.1 ± 4.3%, p < 0.05) was seen in huECFC treated animals compared to controls. Immunohistochemistry failed to show integration and survival of transplanted cells. However, anti-CD31 immunohistochemistry demonstrated an increased vascular density within the infarct border zone (8.6 ± 0.4 CD31+ capillaries per HPF vs. 6.2 ± 0.5 CD31+ capillaries per HPF, p < 0.001). Flow cytometry at day two post-MI showed a trend towards increased myocardial homing of CD45+/CD34+ mononuclear cells (1.1 ± 0.3% vs. 0.7 ± 0.1%, p = 0.2). Interestingly, we detected a significant increase in the population of CD34−/CD45−/Sca1+ cardiac resident stem cells (11.7 ± 1.7% vs. 4.7 ± 1.7%, p < 0.01). In a subgroup analysis no significant differences were seen in the cardioprotective effects of huECFCs derived from diabetic or nondiabetic patients. Conclusions: In a murine model of myocardial infarction in SCID mice, transplantation of huECFCs ameliorated myocardial function by attenuation of adverse post-MI remodeling, presumably through paracrine effects. Cardiac repair is enhanced by increasing myocardial neovascularization and the pool of Sca1+ cardiac resident stem cells. The use of huECFCs for treating ischemic heart disease warrants further investigation.
Collapse
Affiliation(s)
- Marcus-André Deutsch
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetes Center NRW, Ruhr-University Bochum, Georgstr. 11, D-32545 Bad Oeynhausen, Germany;
| | - Stefan Brunner
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
| | - Ulrich Grabmaier
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
| | - Robert David
- Reference- and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Department of Cardiac Surgery, Department Life, Light & Matter (LL&M), 18057 Rostock, Germany;
| | - Ilka Ott
- Department of Internal Medicine, Division of Cardiology, Helios Klinikum Pforzheim, Kanzlerstraße 2-6, D-75175 Pforzheim, Germany;
| | - Bruno C. Huber
- Department of Internal Medicine I, Ludwig-Maximilians-University, Campus Grosshadern, Marchioninistr. 15, D-81377 Munich, Germany; (S.B.); (U.G.)
- Correspondence: ; Tel.: +49-89-44-000
| |
Collapse
|
19
|
Li X, Tao Y, Wang X, Wang T, Liu J. Advanced glycosylation end products (AGEs) controls proliferation, invasion and permeability through orchestrating ARHGAP18/RhoA pathway in human umbilical vein endothelial cells. Glycoconj J 2020; 37:209-219. [PMID: 32016689 DOI: 10.1007/s10719-020-09908-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/27/2022]
Abstract
Diabetic vascular complications caused by endothelial dysfunction play an important role in the pathogenesis of diabetic foot. A well understanding of the role of endothelial dysfunction in diabetic foot vasculopathy will help to further reveal the pathogenesis of diabetic foot. This study aimed to assess whether the RhoA/ROCK signaling pathway is controlled by Rho GTPase-activating proteins (RhoGAP, ARHGAP) and advanced glycosylation end products (AGEs), and to clarify the roles of ARHGAP and AGEs in the RhoA/ROCK signaling pathway or the mechanism by which AGEs regulated RhoA. Real-time PCR was applied to detect gene expression. Manipulation of endothelial biological functions by ARHGAP18 and AGEs were studied via cell counting kit-8 (CCK-8), Western blot, transwell, FITC-Dextran and TEER permeability experiments. RhoA-specific inhibitor Y-27632 was used to silence the activity of RhoA. Dual Luciferase Reporter Assay, Western blot and ELISA assays were used to detect molecular mechanism of endothelial biological functions. In this study, we found that ARHGAP18 was negatively correlated with RhoA, and the expression of ARHGAP18 in human umbilical vein endothelial cells (HUVECs) was decreased with gradient-increased AGEs. Furthermore, AGEs and ARHGAP18 could orchestrate RhoA activity, then activate NF-κB signaling pathway, affect the structural and morphological of VE-cadherin and tight junction protein, and cause endothelial cell contraction, thereby increasing permeability of endothelial cells. In conclusion, AGEs and ARHGAP18 orchestrate cell proliferation, invasion and permeability by controlling the RhoA/ROCK signaling pathway, affecting NF-κB signaling pathway as well as the structure and morphology of VE-cadherin and tight junction protein, and regulating endothelial cell contraction.
Collapse
Affiliation(s)
- Xu Li
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 9/F, Building 7, East Park Road No.1158, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Yue Tao
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 9/F, Building 7, East Park Road No.1158, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Xiaojun Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 9/F, Building 7, East Park Road No.1158, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Tao Wang
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 9/F, Building 7, East Park Road No.1158, Qingpu District, Shanghai, 201700, People's Republic of China
| | - Jianjun Liu
- Department of Vascular Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 9/F, Building 7, East Park Road No.1158, Qingpu District, Shanghai, 201700, People's Republic of China.
| |
Collapse
|
20
|
Gill DM, Male L, Jones AM. A Structure-Reactivity Relationship of the Tandem Asymmetric Dihydroxylation on a Biologically Relevant Diene: Influence of Remote Stereocenters on Diastereofacial Selectivity. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel M. Gill
- School of Pharmacy; University of Birmingham; B15 2TT Edgbaston United Kingdom
| | - Louise Male
- School of Chemistry; University of Birmingham; B15 2TT Edgbaston United Kingdom
| | - Alan M. Jones
- School of Pharmacy; University of Birmingham; B15 2TT Edgbaston United Kingdom
| |
Collapse
|
21
|
Endothelial Colony Forming Cells as an Autologous Model to Study Endothelial Dysfunction in Patients with a Bicuspid Aortic Valve. Int J Mol Sci 2019; 20:ijms20133251. [PMID: 31269711 PMCID: PMC6651394 DOI: 10.3390/ijms20133251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023] Open
Abstract
Bicuspid aortic valve (BAV), the most common congenital heart defect, is associated with an increased prevalence of aortic dilation, aortic rupture and aortic valve calcification. Endothelial cells (ECs) play a major role in vessel wall integrity. Little is known regarding EC function in BAV patients due to lack of patient derived primary ECs. Endothelial colony forming cells (ECFCs) have been reported to be a valid surrogate model for several cardiovascular pathologies, thereby facilitating an in vitro system to assess patient-specific endothelial dysfunction. Therefore, the aim of this study was to investigate cellular functions in ECFCs isolated from BAV patients. Outgrowth and proliferation of ECFCs from patients with BAV (n = 34) and controls with a tricuspid aortic valve (TAV, n = 10) were determined and related to patient characteristics. Interestingly, we were only able to generate ECFCs from TAV and BAV patients without aortic dilation, and failed to isolate ECFC colonies from patients with a dilated aorta. Analyzing EC function showed that while proliferation, cell size and endothelial-to-mesenchymal transition were similar in TAV and BAV ECFCs, migration and the wound healing capacity of BAV ECFCs is significantly higher compared to TAV ECFCs. Furthermore, calcification is blunted in BAV compared to TAV ECFCs. Our results reveal ECs dysfunction in BAV patients and future research is required to unravel the underlying mechanisms and to further validate ECFCs as a patient-specific in vitro model for BAV.
Collapse
|
22
|
Strategies for the Development of Glycomimetic Drug Candidates. Pharmaceuticals (Basel) 2019; 12:ph12020055. [PMID: 30978966 PMCID: PMC6631974 DOI: 10.3390/ph12020055] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Carbohydrates are a structurally-diverse group of natural products which play an important role in numerous biological processes, including immune regulation, infection, and cancer metastasis. Many diseases have been correlated with changes in the composition of cell-surface glycans, highlighting their potential as a therapeutic target. Unfortunately, native carbohydrates suffer from inherently weak binding affinities and poor pharmacokinetic properties. To enhance their usefulness as drug candidates, 'glycomimetics' have been developed: more drug-like compounds which mimic the structure and function of native carbohydrates. Approaches to improve binding affinities (e.g., deoxygenation, pre-organization) and pharmacokinetic properties (e.g., limiting metabolic degradation, improving permeability) have been highlighted in this review, accompanied by relevant examples. By utilizing these strategies, high-affinity ligands with optimized properties can be rationally designed and used to address therapies for novel carbohydrate-binding targets.
Collapse
|