2
|
Novel RNA Extraction Method for Dual RNA-seq Analysis of Pathogen and Host in the Early Stages of Yersinia pestis Pulmonary Infection. Microorganisms 2021; 9:microorganisms9102166. [PMID: 34683487 PMCID: PMC8539884 DOI: 10.3390/microorganisms9102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing lethal infection. The various phases of pneumonic plague are yet to be fully understood. A well-established way to address the pathology of infectious diseases in general, and pneumonic plague in particular, is to conduct concomitant transcriptomic analysis of the bacteria and the host. The analysis of dual RNA by RNA sequencing technology is challenging, due the difficulties of extracting bacterial RNA, which is overwhelmingly outnumbered by the host RNA, especially at the critical early time points post-infection (prior to 48 h). Here, we describe a novel technique that employed the infusion of an RNA preserving reagent (RNAlater) into the lungs of the animals, through the trachea, under deep anesthesia. This method enabled the isolation of stable dual mRNA from the lungs of mice infected with Y. pestis, as early as 24 h post-infection. The RNA was used for transcriptomic analysis, which provided a comprehensive gene expression profile of both the host and the pathogen.
Collapse
|
3
|
Bontemps-Gallo S, Fernandez M, Dewitte A, Raphaël E, Gherardini FC, Elizabeth P, Koch L, Biot F, Reboul A, Sebbane F. Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission. Mol Microbiol 2019; 112:1471-1482. [PMID: 31424585 DOI: 10.1111/mmi.14372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2019] [Indexed: 01/22/2023]
Abstract
The flea's lumen gut is a poorly documented environment where the agent of flea-borne plague, Yersinia pestis, must replicate to produce a transmissible infection. Here, we report that both the acidic pH and osmolarity of the lumen's contents display simple harmonic oscillations with different periods. Since an acidic pH and osmolarity are two of three known stimuli of the OmpR-EnvZ two-component system in bacteria, we investigated the role and function of this Y. pestis system in fleas. By monitoring the in vivo expression pattern of three OmpR-EnvZ-regulated genes, we concluded that the flea gut environment triggers OmpR-EnvZ. This activation was not, however, correlated with changes in pH and osmolarity but matched the pattern of nutrient depletion (the third known stimulus for OmpR-EnvZ). Lastly, we found that the OmpR-EnvZ and the OmpF porin are needed to produce the biofilm that ultimately obstructs the flea's gut and thus hastens the flea-borne transmission of plague. Taken as a whole, our data suggest that the flea gut is a complex, fluctuating environment in which Y. pestis senses nutrient depletion via OmpR-EnvZ. Once activated, the latter triggers a molecular program (including at least OmpF) that produces the biofilm required for efficient plague transmission.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marion Fernandez
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Amélie Dewitte
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Etienne Raphaël
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Frank C Gherardini
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Pradel Elizabeth
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Lionel Koch
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France.,Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France.,Ecole du Val de Grace (EVDG), Paris, France
| | - Fabrice Biot
- Institut de Recherche Biomédicale des Armées (IRBA), Brétigny-sur-Orge, France.,Aix Marseille University, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Angéline Reboul
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Florent Sebbane
- University of Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, F-59000, Lille, France
| |
Collapse
|