1
|
Pessoa GP, López LS, Rosero JM, Dos Santos SCA, Yasui GS, Senhorini JA, Monzani PS. Isolation and cryopreservation of Pseudopimelodus mangurus (Siluriformes) spermatogonial cells. Cryobiology 2024; 116:104941. [PMID: 39029551 DOI: 10.1016/j.cryobiol.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Spermatogonia cryopreservation can be a strategy for future conservation actions. The neotropical Siluriformes Pseudopimelodus mangurus was already classified as vulnerable on the Red List of Threatened Species. P. mangurus spermatogonial cells were isolated, assessed, and cryopreserved. Fragments of the testis were enzymatically dissociated, purified using Percoll density gradient, and submitted to differential plating. Fractionated cells were evaluated by microscopy, ddx4 (vasa) relative expression, and alkaline phosphatase activity. Cryopreservation was conducted using ethylene glycol, glycerol, dimethyl sulfoxide (DMSO), dimethylacetamide (DMA), and propanediol at 1 M, 1.5 M, and 2 M. Cell viability was evaluated and cell concentration was determined. Cell fractions from 20 % and 30 % Percoll gradient bands showed the highest concentrations of spermatogonia. The fraction mix showed 54 % purity and 93 % viability. After differential plating, 60 % purity and 92 % viability were obtained. Spermatogonial cells showed high alkaline phosphatase activity compared to spermatocytes and spermatids. The relative spermatogonial ddx4 expression from the Percoll density gradient was about twice as high as in samples from the testis and the differential plating. The increased ddx4 expression indicated the enrichment of spermatogonial cells by density gradient step and dead cells expressing ddx4 in differential plating, or ddx4 decreasing expression during cell culture. For this reason, cells from the Percoll gradient were chosen for cryopreservation. Propanediol at 1 M demonstrated the best condition for spermatogonial cell cryopreservation, presenting 98 % viability, while dimethylacetamide at 2 M represented the least favorable condition, with approximately 47 % viability. These findings are essential for P. mangurus spermatogonial cell cryopreservation, aiming to generate a spermatogonia cryobank for future conservation efforts.
Collapse
Affiliation(s)
- Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Jenyffer Mairely Rosero
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil; Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil; Laboratory of Fish Biotechnology, Chico Mendes Institute of Biodiversity Conservation, National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
2
|
Yu Y, Yang Y, Ye H, Lu L, Li H, Xu Z, Li W, Yin X, Xu D. Identification of germ cells in large yellow croaker (Larimichthys crocea) and yellow drum (Nibea albiflora) using RT-PCR and in situ hybridization analyses. Gene 2023; 863:147280. [PMID: 36804002 DOI: 10.1016/j.gene.2023.147280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/20/2023]
Abstract
Ocean-caught large yellow croaker (Larimichthys crocea) represents an important germplasm resource for the breeding of this species; however, these fish tend to show poor survival in captivity and would be unsuitable breeding purposes. As an alternative to the use of wild-caught croakers, germ cell transplantation has been proposed using the L. crocea specimens as donors and yellow drum (Nibea albiflora) as recipients. In this regard, the identification of L. crocea and N. albiflora germ cells is an essential prerequisite for establishing a germ cell transplantation protocol for these fish. In this study, we cloned the 3' untranslated regions (UTR) of the vasa, dnd, and nanos2 genes in N. albiflora using the rapid amplification of cDNA ends (RACE) method and then aligned and analyzed the sequences of the corresponding genes in L. crocea and N. albiflora. On the basis of gene sequence differences, we designed species-specific primers and probes for RT-PCR analysis and in situ hybridization. RT-PCR analysis revealed that these species-specific primers exclusively amplified DNA from gonads of the respective species, thus confirming that we had six specific primer pairs that could be used to distinguish the germ cells in L. crocea and N. albiflora. Using in situ hybridization analysis, we established that whereas Lcvasa and Nadnd probes showed high species specificity, the probes for Navasa and Lcdnd showed a less specificity. In situ hybridization using Lcvasa and Nadnd thus enabled us to visualize the germ cells in these two species. Using these species-specific primers and probes, we can reliably distinguish the germ cells of L. crocea and N. albiflora, thereby establishing an effective approach for the post-transplantation identification of germ cells when using L. crocea and N. albiflora as donors and recipients, respectively.
Collapse
Affiliation(s)
- Yanjie Yu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Yang Yang
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lei Lu
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Haidong Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China; Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China
| | - Zhijin Xu
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Weiye Li
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Xiaolong Yin
- Zhoushan Fisheries Research Institute, Zhoushan, China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China; Ocean and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
3
|
Characterization of ddx4 and dnd Homologs in Snakeskin Gourami ( Trichopodus pectoralis) and Their Expression Levels during Larval Development and in Gonads of Males and Females. Animals (Basel) 2022; 12:ani12233415. [PMID: 36496935 PMCID: PMC9735842 DOI: 10.3390/ani12233415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this study was to clone and characterize ddx4 and dnd1 homologs in snakeskin gourami (Trichopodus pectoralis) and to determine their expression levels during larval development and in the gonads of males and females. Both cDNAs contained predicted regions that shared consensus motifs with the ddx4 family in teleosts and the dnd family in vertebrates. Phylogenetic tree construction analysis confirmed that these two genes were clustered in the families of teleosts. Both ddx4 and dnd1 mRNAs were detectable only in the gonads, particularly in germ cells. These two genes were expressed during early larval development. The expression of ddx4 was high during early larval development and decreased with increasing developmental age, whereas dnd1 expression increased with developmental age. In adult fish, the expression levels of both genes were higher in the ovary than in the testis. Overall, these findings provide valuable molecular information on ddx4 and dnd, and can be applied in future reproductive biological studies relating to sex dimorphism in snakeskin gourami.
Collapse
|