1
|
Soltan-Dehghan H, Farzaneh A, Hashemi H, Nabovati P, Khabazkhoob M. Topographic factors associated with anterior chamber angle narrowing in patients with keratoconus. Int J Ophthalmol 2025; 18:67-73. [PMID: 39829623 PMCID: PMC11672092 DOI: 10.18240/ijo.2025.01.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/16/2024] [Indexed: 01/22/2025] Open
Abstract
AIM To identify topographic determinants of the anterior chamber angle (ACA) in patients with keratoconus (KCN). METHODS Four hundred and ten eyes of 294 patients with KCN were recruited for this study. First, complete ocular examinations were performed for all patients, including visual acuity measurement, refraction, and slit-lamp biomicroscopy. Then, all participants underwent corneal imaging by the Oculus Pentacam HR. RESULTS The mean age of the participants was 32.40±8.52y (15-60y) and 69.5% of them were male. The mean ACA was 38.47°±5.75° (range: 14.40° to 56.50°) in the whole sample, 38.24°±6.00° in males, and 38.98°±5.11° in females (P=0.447). The mean ACA was significantly different among different groups of cone morphology, as patients with nipple cones showed the lowest mean ACA. Moreover, there were statistically significant differences in the mean ACA among different groups of cone locations, with patients having central cones exhibiting the lowest mean ACA (P<0.001). Anterior and posterior Q values were significantly, directly correlated with ACA (anterior Q: r=0.122, P=0.014, posterior Q: r=0.192, P<0.001). CONCLUSION This study provides critical insights into the risk factors for ACA narrowing in KCN patients, which is essential for planning intraocular surgeries. Patients with nipple and central cones exhibited the most significant ACA narrowing. Additionally, more negative Q-values are associated with increased ACA narrowing, highlighting the need for targeted diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hamed Soltan-Dehghan
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Abdollah Farzaneh
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hassan Hashemi
- Noor Ophthalmology Research Center, Noor Eye Hospital, Tehran 1983963113, Iran
| | - Payam Nabovati
- Rehabilitation Research Center, Department of Optometry, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mehdi Khabazkhoob
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran 1968653111, Iran
| |
Collapse
|
2
|
Liu C, Wang X, Ong HS, Ang M, Chee SP, Ching J, Chua KV, Han SHY, Mehta JS, Zhou L, Liu YC. Aqueous Proteomic and Metabolomic Profiles in Low-Energy vs High-Energy Femtosecond Laser-Assisted Cataract Surgery. Invest Ophthalmol Vis Sci 2025; 66:10. [PMID: 39775700 PMCID: PMC11717129 DOI: 10.1167/iovs.66.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Purpose To investigate the aqueous proteomics and metabolomics in low-energy and high-energy femtosecond laser-assisted cataract surgery (FLACS). Methods In this prospective observational study, 72 patients were randomized to 3 groups: low-energy FLACS, high-energy FLACS, and conventional phacoemulsification (controls). Aqueous was collected after femtosecond laser treatment or at the beginning of surgery (controls). Proteomic analysis was conducted using a data-independent acquisition method, whereas aqueous metabolomics were analyzed with liquid chromatography-tandem mass spectrometry. Bioinformatics analyses were performed to integrate the results of proteomics and metabolomics. Results Compared with low-energy FLACS, significantly elevated aqueous hemoglobin subunit beta, G protein subunit beta, carbonic anhydrase 1, and asymmetric dimethylarginine were observed in high-energy FLACS, suggesting significantly greater oxidative stress, inflammation, immunity, metabolism, and mitochondrial fatty acids oxidation. Compared with controls, significantly increased aqueous proteins and metabolites related to immune and inflammation (beta-crystallin B1, hemoglobin subunit beta, putrescine, and spermine) and oxidative stress (heat shock proteins, peroxiredoxins, and long-chain acylcarnitines) were observed in FLACS. Joint pathway analysis revealed nicotinate/nicotinamide metabolism and riboflavin metabolism were significantly overexpressed in high-energy FLACS compared with low-energy FLACS, whereas the pentose phosphate pathway and glycolysis were the most significant pathways when comparing FLACS with controls. Conclusions FLACS induced higher immunological and inflammatory responses, oxidative stress reactions, and mitochondrial fatty acid oxidative stress compared with controls. These differential effects were more pronounced when a higher laser energy was used.
Collapse
Affiliation(s)
- Chang Liu
- Singapore Eye Research Institute, Singapore
| | - Xinyue Wang
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Hon Shing Ong
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Soon-Phaik Chee
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore
| | | | | | - Jodhbir S. Mehta
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Lei Zhou
- School of Optometry; Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Yu-Chi Liu
- Singapore Eye Research Institute, Singapore
- Singapore National Eye Centre, Singapore
- Duke-NUS Medical School, Singapore
- National Taiwan University, Taiwan
| |
Collapse
|
3
|
Kerman T, Lev Ari O, Hazan I, Amitai N, Tsumi E. The role of inflammatory periocular, ocular surface and systemic diseases in involutional ectropion. Eye (Lond) 2024; 38:3279-3284. [PMID: 39080422 PMCID: PMC11584643 DOI: 10.1038/s41433-024-03276-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND This study investigated the association between involutional ectropion and chronic inflammatory diseases of the eyelid and ocular surface, and other systemic diseases. METHODS This case-control study was conducted using electronic medical records from Clalit Health Services in Israel, 2001-2022. Patients diagnosed with involutional ectropion were compared to two control groups: one with senile cataracts and another with other ophthalmic diseases. The groups were matched 1:3 by birth year, sex, and ethnicity. Mixed models were used to assess differences in demographics, periocular, ocular, and systemic diseases between the groups. Conditional logistic regression was used to estimate the odds ratios (OR) and adjust for confounders. RESULTS A total of 1786 patients with involutional ectropion and 5358 matched individuals in each control group were included. The average age of the patients with involutional ectropion was 77 ± 10 years, and 60% were men. Significant associations were found between involutional ectropion and several inflammatory diseases: blepharitis (OR 4.25, 95% confidence interval [CI]: 3.68-4.91), chalazion (OR 3.01, 95% CI: 2.3-3.94), hordeolum (OR 2.27, 95% CI: 1.8-2.86), dermatitis of the eyelid (OR 1.69, 95% CI: 1.16-2.47), chronic conjunctivitis (OR 3.49, 95% CI: 2.86-4.26), pterygium (OR 2.21, 95% CI: 1.71-2.86), hypertension (OR 1.5, 95% CI: 1.31-1.72), dyslipidaemia (OR 1.46, 95% CI: 1.3-1.64), and rheumatic disease (OR 1.9, 95% CI: 1.5-2.4). CONCLUSIONS Periocular, ocular surface, and systemic inflammatory diseases are independent risk factors for involutional ectropion. Further research is necessary to fully understand these associations.
Collapse
Affiliation(s)
- Tomer Kerman
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Clinical Research Center, Soroka Medical Center, Beer-Sheva, Israel
| | - Omer Lev Ari
- Department of Ophthalmology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itai Hazan
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Clinical Research Center, Soroka Medical Center, Beer-Sheva, Israel
| | - Nir Amitai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Clinical Research Center, Soroka Medical Center, Beer-Sheva, Israel
| | - Erez Tsumi
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Department of Ophthalmology, Soroka Medical Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Barone V, Petrini D, Nunziata S, Surico PL, Scarani C, Offi F, Villani V, Coassin M, Di Zazzo A. Impact of Scleral Lenses on Visual Acuity and Ocular Aberrations in Corneal Ectasia: A Comprehensive Review. J Pers Med 2024; 14:1051. [PMID: 39452558 PMCID: PMC11509004 DOI: 10.3390/jpm14101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Corneal ectasias, including keratoconus (KC), pellucid marginal degeneration (PMD), and post-LASIK ectasia, poses significant visual rehabilitation challenges due to the resultant irregular astigmatism, myopia, and higher-order aberrations (HOAs). These conditions often resist traditional corrective methods, necessitating advanced optical solutions. Scleral lenses (SLs) have emerged as a primary non-surgical option for managing these complex corneal irregularities. SLs form a smooth optical interface by forming a tear-filled chamber between the lens and the cornea, effectively mitigating HOAs and improving both high-contrast and low-contrast visual acuity (VA). This review evaluates the efficacy of SLs in enhancing VA and reducing aberrations in patients with corneal ectasia. It also explores the technological advancements in SLs, such as profilometry and wavefront-guided systems, which enable more precise and customized lens fittings by accurately mapping the eye's surface and addressing specific visual aberrations. The current body of evidence demonstrates that custom SLs significantly improve visual outcomes across various ectatic conditions, offering superior performance compared to conventional correction methods. However, challenges such as the complexity of fitting and the need for precise alignment remain. Ongoing innovations in SL technology and customization are likely to further enhance their clinical utility, solidifying their role as an indispensable tool in the management of corneal ectasias.
Collapse
Affiliation(s)
- Vincenzo Barone
- Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Daniele Petrini
- Department of Sciences, Optometry and Optics, Roma Tre University, 00144 Rome, Italy
| | - Sebastiano Nunziata
- Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Pier Luigi Surico
- Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Claudia Scarani
- Department of Sciences, Optometry and Optics, Roma Tre University, 00144 Rome, Italy
| | - Francesco Offi
- Department of Sciences, Optometry and Optics, Roma Tre University, 00144 Rome, Italy
| | - Valentina Villani
- Department of Sciences, Optometry and Optics, Roma Tre University, 00144 Rome, Italy
| | - Marco Coassin
- Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
- Ophthalmology Operative Complex Unit, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
- Rare Corneal Diseases Center, Campus Bio-Medico University Hospital Foundation, 00128 Rome, Italy
| |
Collapse
|
5
|
Liu C, Lin MTY, Lee IXY, Wong JHF, Lu D, Lam TC, Zhou L, Mehta JS, Ong HS, Ang M, Tong L, Liu YC. Neuropathic Corneal Pain: Tear Proteomic and Neuromediator Profiles, Imaging Features, and Clinical Manifestations. Am J Ophthalmol 2024; 265:6-20. [PMID: 38521157 DOI: 10.1016/j.ajo.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
PURPOSE To investigate the tear proteomic and neuromediator profiles, in vivo confocal microscopy (IVCM) imaging features, and clinical manifestations in neuropathic corneal pain (NCP) patients. DESIGN Cross-sectional study. METHODS A total of 20 NCP patients and 20 age-matched controls were recruited. All subjects were evaluated by corneal sensitivity, Schirmer test, tear break-up time, and corneal and ocular surface staining, Ocular Surface Disease Index and Ocular Pain Assessment Survey questionnaires were administered, as well as IVCM examinations for corneal nerves, microneruomas, and epithelial and dendritic cells. Tears were collected for neuromediator and proteomic analysis using enzyme-linked immunosorbent assay and data-independent acquisition mass spectrometry. RESULTS Burning and sensitivity to light were the 2 most common symptoms in NCP. A total of 188 significantly dysregulated proteins, such as elevated metallothionein-2, creatine kinases B-type, vesicle-associated membrane protein 2, neurofilament light polypeptide, and myelin basic protein, were identified in the NCP patients. The top 10 dysregulated biological pathways in NCP include neurotoxicity, axonal signaling, wound healing, neutrophil degradation, apoptosis, thrombin signaling mitochondrial dysfunction, and RHOGDI and P70S6K signaling pathways. Compared to controls, the NCP cohort presented with significantly decreased corneal sensitivity (P < .001), decreased corneal nerve fiber length (P = .003), corneal nerve fiber density (P = .006), and nerve fiber fractal dimension (P = .033), as well as increased corneal nerve fiber width (P = .002), increased length, total area and perimeter of microneuromas (P < .001, P < .001, P = .019), smaller corneal epithelial size (P = .017), and higher nerve growth factor level in tears (P = .006). CONCLUSIONS These clinical manifestations, imaging features, and molecular characterizations would contribute to the diagnostics and potential therapeutic targets for NCP.
Collapse
Affiliation(s)
- Chang Liu
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Molly Tzu-Yu Lin
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Isabelle Xin Yu Lee
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore
| | - Jipson Hon Fai Wong
- Clinical Research Platform (J.H.F.W.), Singapore Eye Research Institute, Singapore
| | - Daqian Lu
- Centre for Myopia Research (D.L., T.C.L.), School of Optometry, Hong Kong Polytechnic University, Hong Kong
| | - Thomas Chuen Lam
- Centre for Myopia Research (D.L., T.C.L.), School of Optometry, Hong Kong Polytechnic University, Hong Kong; Centre for Eye and Vision Research (CEVR) (T.C.L.), Hong Kong
| | - Lei Zhou
- School of Optometry (L.Z.), Department of Applied Biology and Chemical Technology, Research Centre for SHARP Vision (RCSV); The Hong Kong Polytechnic University, Hong Kong
| | - Jodhbir S Mehta
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Hon Shing Ong
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Marcus Ang
- Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ocular Surface Research Group (L.T.), Singapore Eye Research Institute, Singapore; Eye Academic Clinical Program (L.T.), Duke-NUS Medical School, Singapore; Department of Ophthalmology (L.T.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu-Chi Liu
- From Tissue Engineering and Cell Therapy Group (C.L., M.T.-Y.L., I.X.Y.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Cornea and Refractive Surgery Group (C.L., J.S.M., H.S.O., Y.-C.L.), Singapore Eye Research Institute, Singapore; Department of Cornea and External Eye Disease (J.S.M., H.S.O., M.A., L.T., Y.-C.L.), Singapore National Eye Centre, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (J.S.M., H.S.O., M.A., Y.-C.L.), Duke-NUS Medical School, Singapore; Department of Ophthalmology (Y.-C.L.), National Taiwan University, Taiwan.
| |
Collapse
|
6
|
Yang GN, Sun YBY, Roberts PK, Moka H, Sung MK, Gardner-Russell J, El Wazan L, Toussaint B, Kumar S, Machin H, Dusting GJ, Parfitt GJ, Davidson K, Chong EW, Brown KD, Polo JM, Daniell M. Exploring single-cell RNA sequencing as a decision-making tool in the clinical management of Fuchs' endothelial corneal dystrophy. Prog Retin Eye Res 2024; 102:101286. [PMID: 38969166 DOI: 10.1016/j.preteyeres.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled the identification of novel gene signatures and cell heterogeneity in numerous tissues and diseases. Here we review the use of this technology for Fuchs' Endothelial Corneal Dystrophy (FECD). FECD is the most common indication for corneal endothelial transplantation worldwide. FECD is challenging to manage because it is genetically heterogenous, can be autosomal dominant or sporadic, and progress at different rates. Single-cell RNA sequencing has enabled the discovery of several FECD subtypes, each with associated gene signatures, and cell heterogeneity. Current FECD treatments are mainly surgical, with various Rho kinase (ROCK) inhibitors used to promote endothelial cell metabolism and proliferation following surgery. A range of emerging therapies for FECD including cell therapies, gene therapies, tissue engineered scaffolds, and pharmaceuticals are in preclinical and clinical trials. Unlike conventional disease management methods based on clinical presentations and family history, targeting FECD using scRNA-seq based precision-medicine has the potential to pinpoint the disease subtypes, mechanisms, stages, severities, and help clinicians in making the best decision for surgeries and the applications of therapeutics. In this review, we first discuss the feasibility and potential of using scRNA-seq in clinical diagnostics for FECD, highlight advances from the latest clinical treatments and emerging therapies for FECD, integrate scRNA-seq results and clinical notes from our FECD patients and discuss the potential of applying alternative therapies to manage these cases clinically.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Yu B Y Sun
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Philip Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna, Austria
| | - Hothri Moka
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Min K Sung
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Layal El Wazan
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Bridget Toussaint
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Satheesh Kumar
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Heather Machin
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Geraint J Parfitt
- Mogrify Limited, 25 Cambridge Science Park Milton Road, Milton, Cambridge, UK
| | - Kathryn Davidson
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Elaine W Chong
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Karl D Brown
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Jose M Polo
- Department of Anatomy and Development Biology, Monash University, Clayton, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, Level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Lions Eye Donation Service, Level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Mansoor H, Lee IXY, Lin MTY, Ang HP, Xue YC, Krishaa L, Patil M, Koh SK, Tan HC, Zhou L, Liu YC. Topical and oral peroxisome proliferator-activated receptor-α agonist ameliorates diabetic corneal neuropathy. Sci Rep 2024; 14:13435. [PMID: 38862650 PMCID: PMC11167005 DOI: 10.1038/s41598-024-64451-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal β-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased β-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.
Collapse
Affiliation(s)
| | - Isabelle Xin Yu Lee
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Heng Pei Ang
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Yao Cong Xue
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - L Krishaa
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Moushmi Patil
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomic Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Hong Chang Tan
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - Lei Zhou
- Department of Applied Biology and Chemical Technology, School of Optometry, Research Centre for SHARP Vision (RCSV), The Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Pak Shek Kok, Hong Kong
| | - Yu-Chi Liu
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, 11 Third Hospital Ave, Singapore, 168751, Singapore.
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore, Singapore.
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore, Singapore.
- Eye-Academic Clinical Program, Singapore Graduate Medical School, Duke-National University, Singapore, Singapore.
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
8
|
Pucchio A, Krance SH, Pur DR, Bhatti J, Bassi A, Manichavagan K, Brahmbhatt S, Aggarwal I, Singh P, Virani A, Stanley M, Miranda RN, Felfeli T. Applications of artificial intelligence and bioinformatics methodologies in the analysis of ocular biofluid markers: a scoping review. Graefes Arch Clin Exp Ophthalmol 2024; 262:1041-1091. [PMID: 37421481 DOI: 10.1007/s00417-023-06100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE This scoping review summarizes the applications of artificial intelligence (AI) and bioinformatics methodologies in analysis of ocular biofluid markers. The secondary objective was to explore supervised and unsupervised AI techniques and their predictive accuracies. We also evaluate the integration of bioinformatics with AI tools. METHODS This scoping review was conducted across five electronic databases including EMBASE, Medline, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Web of Science from inception to July 14, 2021. Studies pertaining to biofluid marker analysis using AI or bioinformatics were included. RESULTS A total of 10,262 articles were retrieved from all databases and 177 studies met the inclusion criteria. The most commonly studied ocular diseases were diabetic eye diseases, with 50 papers (28%), while glaucoma was explored in 25 studies (14%), age-related macular degeneration in 20 (11%), dry eye disease in 10 (6%), and uveitis in 9 (5%). Supervised learning was used in 91 papers (51%), unsupervised AI in 83 (46%), and bioinformatics in 85 (48%). Ninety-eight papers (55%) used more than one class of AI (e.g. > 1 of supervised, unsupervised, bioinformatics, or statistical techniques), while 79 (45%) used only one. Supervised learning techniques were often used to predict disease status or prognosis, and demonstrated strong accuracy. Unsupervised AI algorithms were used to bolster the accuracy of other algorithms, identify molecularly distinct subgroups, or cluster cases into distinct subgroups that are useful for prediction of the disease course. Finally, bioinformatic tools were used to translate complex biomarker profiles or findings into interpretable data. CONCLUSION AI analysis of biofluid markers displayed diagnostic accuracy, provided insight into mechanisms of molecular etiologies, and had the ability to provide individualized targeted therapeutic treatment for patients. Given the progression of AI towards use in both research and the clinic, ophthalmologists should be broadly aware of the commonly used algorithms and their applications. Future research may be aimed at validating algorithms and integrating them in clinical practice.
Collapse
Affiliation(s)
- Aidan Pucchio
- Department of Ophthalmology, Queen's University, Kingston, ON, Canada
- Queens School of Medicine, Kingston, ON, Canada
| | - Saffire H Krance
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daiana R Pur
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jasmine Bhatti
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Arshpreet Bassi
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Shaily Brahmbhatt
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Priyanka Singh
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Aleena Virani
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Rafael N Miranda
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Tina Felfeli
- The Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, 340 College Street, Suite 400, Toronto, ON, M5T 3A9, Canada.
| |
Collapse
|
9
|
Song T, Song J, Li J, Ben Hilal H, Li X, Feng P, Chen W. The candidate proteins associated with keratoconus: A meta-analysis and bioinformatic analysis. PLoS One 2024; 19:e0299739. [PMID: 38483957 PMCID: PMC10939257 DOI: 10.1371/journal.pone.0299739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
PURPOSE Keratoconus (KC) is a multifactorial disorder. This study aimed to conduct a systematic meta-analysis to exclusively explore the candidate proteins associated with KC pathogenesis. METHODS Relevant literature published in the last ten years in Pubmed, Web of Science, Cochrane, and Embase databases were searched. Protein expression data were presented as the standard mean difference (SMD) and 95% confidence intervals (CI). The meta-analysis is registered on PROSPERO, registration number CRD42022332442 and was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement (PRISMA). GO and KEGG enrichment analysis were performed, as well as the miRNAs and chemicals targeting the candidate proteins were predicted. PPI was analyzed to screen the hub proteins, and their expression was verified by RT-qPCR. RESULTS A total of 21 studies were included in the meta-analysis, involving 346 normal eyes and 493 KC eyes. 18 deregulated proteins with significant SMD values were subjected to further analysis. In which, 7 proteins were up-regulated in KC compared with normal controls, including IL6 (SMD 1.54, 95%CI [0.85, 2.24]), IL1B (SMD 2.07, 95%CI [0.98, 3.16]), TNF (SMD 2.1, 95%CI [0.24, 3.96]), and MMP9 (SMD 1.96, 95%CI [0.68, 3.24]). While 11 proteins were down-regulated in KC including LOX (SMD 2.54, 95%CI [-4.51, -0.57]). GO and KEGG analysis showed that the deregulated proteins were involved in inflammation, extracellular matrix (ECM) remodeling, and apoptosis. MMP9, IL6, LOX, TNF, and IL1B were regarded as hub proteins according to the PPI analysis, and their transcription changes in stromal fibroblasts of KC were consistent with the results of the meta-analysis. Moreover, 10 miRNAs and two natural polyphenols interacting with hub proteins were identified. CONCLUSION This study obtained 18 candidate proteins and demonstrated altered cytokine profiles, ECM remodeling, and apoptosis in KC patients through meta-analysis and bioinformatic analysis. It will provide biomarkers for further understanding of KC pathogenesis, and potential therapeutic targets for the drug treatment of KC.
Collapse
Affiliation(s)
- Ting Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jie Song
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Jingyi Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Halima Ben Hilal
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaona Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Pengfei Feng
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
10
|
Chandran C, Santra M, Rubin E, Geary ML, Yam GHF. Regenerative Therapy for Corneal Scarring Disorders. Biomedicines 2024; 12:649. [PMID: 38540264 PMCID: PMC10967722 DOI: 10.3390/biomedicines12030649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024] Open
Abstract
The cornea is a transparent and vitally multifaceted component of the eye, playing a pivotal role in vision and ocular health. It has primary refractive and protective functions. Typical corneal dysfunctions include opacities and deformities that result from injuries, infections, or other medical conditions. These can significantly impair vision. The conventional challenges in managing corneal ailments include the limited regenerative capacity (except corneal epithelium), immune response after donor tissue transplantation, a risk of long-term graft rejection, and the global shortage of transplantable donor materials. This review delves into the intricate composition of the cornea, the landscape of corneal regeneration, and the multifaceted repercussions of scar-related pathologies. It will elucidate the etiology and types of dysfunctions, assess current treatments and their limitations, and explore the potential of regenerative therapy that has emerged in both in vivo and clinical trials. This review will shed light on existing gaps in corneal disorder management and discuss the feasibility and challenges of advancing regenerative therapies for corneal stromal scarring.
Collapse
Affiliation(s)
- Christine Chandran
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Mithun Santra
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Elizabeth Rubin
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Moira L. Geary
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
| | - Gary Hin-Fai Yam
- Corneal Regeneration Laboratory, Department of Ophthalmology, Mercy Vision Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (C.C.); (M.S.); (E.R.); (M.L.G.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
11
|
Wu PS, Liu HY, Wong TH, Lin JT, Hu FR, Lin MH. Comparative Proteomics Reveals Prolonged Corneal Preservation Impaired Ocular Surface Immunity Accompanied by Fibrosis in Human Stroma. J Proteome Res 2023; 22:3730-3741. [PMID: 37976471 DOI: 10.1021/acs.jproteome.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cornea transplantation is one of the most commonly performed allotransplantations worldwide. Prolonged storage of donor corneas leads to decreased endothelial cell viability, severe stromal edema, and opacification, significantly compromising the success rate of corneal transplantation. Corneal stroma, which constitutes the majority of the cornea, plays a crucial role in maintaining its shape and transparency. In this study, we conducted proteomic analysis of corneal stroma preserved in Optisol-GS medium at 4 °C for 7 or 14 days to investigate molecular changes during storage. Among 1923 identified proteins, 1634 were quantifiable and 387 were significantly regulated with longer preservation. Compared to stroma preserved for 7 days, proteins involved in ocular surface immunomodulation were largely downregulated while proteins associated with extracellular matrix reorganization and fibrosis were upregulated in those preserved for 14 days. The increase in extracellular matrix structural proteins together with upregulation of growth factor signaling implies the occurrence of stromal fibrosis, which may compromise tissue clarity and cause vision impairments. This study is the first to provide insights into how storage duration affects corneal stroma from a proteomic perspective. Our findings may contribute to future research efforts aimed at developing long-term preservation techniques and improving the quality of preserved corneas, thus maximizing their clinical application.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Jui-Ti Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|
12
|
Jiang X, Boutin T, Vitart V. Colocalization of corneal resistance factor GWAS loci with GTEx e/sQTLs highlights plausible candidate causal genes for keratoconus postnatal corneal stroma weakening. Front Genet 2023; 14:1171217. [PMID: 37621707 PMCID: PMC10445647 DOI: 10.3389/fgene.2023.1171217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Background: Genome-wide association studies (GWAS) for corneal resistance factor (CRF) have identified 100s of loci and proved useful to uncover genetic determinants for keratoconus, a corneal ectasia of early-adulthood onset and common indication of corneal transplantation. In the current absence of studies to probe the impact of candidate causal variants in the cornea, we aimed to fill some of this knowledge gap by leveraging tissue-shared genetic effects. Methods: 181 CRF signals were examined for evidence of colocalization with genetic signals affecting steady-state gene transcription and splicing in adult, non-eye, tissues of the Genotype-Tissue Expression (GTEx) project. Expression of candidate causal genes thus nominated was evaluated in single cell transcriptomes from adult cornea, limbus and conjunctiva. Fine-mapping and colocalization of CRF and keratoconus GWAS signals was also deployed to support their sharing causal variants. Results and discussion: 26.5% of CRF causal signals colocalized with GTEx v8 signals and nominated genes enriched in genes with high and specific expression in corneal stromal cells amongst tissues examined. Enrichment analyses carried out with nearest genes to all 181 CRF GWAS signals indicated that stromal cells of the limbus could be susceptible to signals that did not colocalize with GTEx's. These cells might not be well represented in GTEx and/or the genetic associations might have context specific effects. The causal signals shared with GTEx provide new insights into mediation of CRF genetic effects, including modulation of splicing events. Functionally relevant roles for several implicated genes' products in providing tensile strength, mechano-sensing and signaling make the corresponding genes and regulatory variants prime candidates to be validated and their roles and effects across tissues elucidated. Colocalization of CRF and keratoconus GWAS signals strengthened support for shared causal variants but also highlighted many ways into which likely true shared signals could be missed when using readily available GWAS summary statistics.
Collapse
Affiliation(s)
- Xinyi Jiang
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Genetics and Molecular Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Thibaud Boutin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Jaskiewicz K, Maleszka-Kurpiel M, Kabza M, Karolak JA, Gajecka M. Sequence variants contributing to dysregulated inflammatory responses across keratoconic cone surface in adolescent patients with keratoconus. Front Immunol 2023; 14:1197054. [PMID: 37483635 PMCID: PMC10359427 DOI: 10.3389/fimmu.2023.1197054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Background Keratoconus (KTCN) is the most common corneal ectasia resulting in a conical shape of the cornea. Here, genomic variation in the corneal epithelium (CE) across the keratoconic cone surface in patients with KTCN and its relevance in the functioning of the immune system were assessed. Methods Samples from four unrelated adolescent patients with KTCN and two control individuals were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated towards the whole-genome sequencing (WGS) study embracing a total of 18 experimental samples. The coding and non-coding sequence variation, including structural variation, was assessed and then evaluated together with the previously reported transcriptomic outcomes for the same CE samples and full-thickness corneas. Results First, pathway enrichment analysis of genes with identified coding variants pointed to "Antigen presentation" and "Interferon alpha/beta signaling" as the most overrepresented pathways, indicating the involvement of inflammatory responses in KTCN. Both coding and non-coding sequence variants were found in genes (or in their close proximity) linked to the previously revealed KTCN-specific cellular components, namely, "Actin cytoskeleton", "Extracellular matrix", "Collagen-containing extracellular matrix", "Focal adhesion", "Hippo signaling pathway", and "Wnt signaling" pathways. No genomic heterogeneity across the corneal surface was found comparing the assessed topographic regions. Thirty-five chromosomal regions enriched in both coding and non-coding KTCN-specific sequence variants were revealed, with a most representative 5q locus previously recognized as involved in KTCN. Conclusion The identified genomic features indicate the involvement of innate and adaptive immune system responses in KTCN pathogenesis.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland
- Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
14
|
Jaskiewicz K, Maleszka-Kurpiel M, Matuszewska E, Kabza M, Rydzanicz M, Malinowski R, Ploski R, Matysiak J, Gajecka M. The Impaired Wound Healing Process Is a Major Factor in Remodeling of the Corneal Epithelium in Adult and Adolescent Patients With Keratoconus. Invest Ophthalmol Vis Sci 2023; 64:22. [PMID: 36811882 PMCID: PMC9970004 DOI: 10.1167/iovs.64.2.22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Purpose Keratoconus (KTCN) is the most common corneal ectasia, characterized by pathological cone formation. Here, to provide an insight into the remodeling of the corneal epithelium (CE) during the course of the disease, we evaluated topographic regions of the CE of adult and adolescent patients with KTCN. Methods The CE samples from 17 adult and 6 adolescent patients with KTCN, and 5 control CE samples were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated toward RNA sequencing and MALDI-TOF/TOF Tandem Mass Spectrometry. Data from transcriptomic and proteomic investigations were consolidated with the morphological and clinical findings. Results The critical elements of the wound healing process, epithelial-mesenchymal transition, cell-cell communications, and cell-extracellular matrix interactions were altered in the particular corneal topographic regions. Abnormalities in pathways of neutrophils degranulation, extracellular matrix processing, apical junctions, IL, and IFN signaling were revealed to cooperatively disorganize the epithelial healing. Deregulation of the epithelial healing, G2M checkpoints, apoptosis, and DNA repair pathways in the middle CE topographic region in KTCN explains the presence of morphological changes in the corresponding doughnut pattern (a thin cone center surrounded by a thickened annulus). Despite similar morphological characteristics of CE samples in adolescents and adults with KTCN, their transcriptomic features were different. Values of the posterior corneal elevation differentiated adults with KTCN from adolescents with KTCN and correlated with the expression of TCHP, SPATA13, CNOT3, WNK1, TGFB2, and KRT12 genes. Conclusions Identified molecular, morphological, and clinical features indicate the effect of impaired wound healing on corneal remodeling in KTCN CE.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland,Department of Optometry, Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Eliza Matuszewska
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jan Matysiak
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Stachon T, Nastaranpour M, Seitz B, Meese E, Latta L, Taneri S, Ardjomand N, Szentmáry N, Ludwig N. Altered Regulation of mRNA and miRNA Expression in Epithelial and Stromal Tissue of Keratoconus Corneas. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35816043 PMCID: PMC9284461 DOI: 10.1167/iovs.63.8.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Evaluation of mRNA and microRNA (miRNA) expression in epithelium and stroma of patients with keratoconus. Methods The epithelium and stroma of eight corneas of eight patients with keratoconus and eight corneas of eight non-keratoconus healthy controls were studied separately. RNA was extracted, and mRNA and miRNA analyses were performed using microarrays. Differentially expressed mRNAs and miRNAs in epithelial and stromal keratoconus samples compared to healthy controls were identified. Selected genes and miRNAs were further validated using RT-qPCR. Results We discovered 170 epithelial and 1498 stromal deregulated protein-coding mRNAs in KC samples. In addition, in epithelial samples 180 miRNAs and in stromal samples 379 miRNAs were significantly deregulated more than twofold compared to controls. Pathway analysis revealed enrichment of metabolic and axon guidance pathways for epithelial cells and enrichment of metabolic, mitogen-activated protein kinase (MAPK), and focal adhesion pathways for stromal cells. Conclusions This study demonstrates significant differences in the expression and regulation of mRNAs and miRNAs in the epithelium and stroma of Patients with KC. Also, in addition to the well-known target candidates, we were able to identify further genes and miRNAs that may be associated with keratoconus. Signaling pathways influencing metabolic changes and cell contacts are affected in epithelial and stromal cells of patients with keratoconus.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Mahsa Nastaranpour
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg (Saar), Germany
| | - Eckart Meese
- Department of Human Genetics and Center for Human and Molecular Biology, Saarland University, Homburg (Saar), Germany
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany
| | - Suphi Taneri
- Center for Refractive Surgery, Eye Department at St. Francis Hospital, Muenster, Germany
| | | | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg (Saar), Germany.,Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Nicole Ludwig
- Department of Human Genetics and Center for Human and Molecular Biology, Saarland University, Homburg (Saar), Germany
| |
Collapse
|
16
|
Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. Host Defense Peptides at the Ocular Surface: Roles in Health and Major Diseases, and Therapeutic Potentials. Front Med (Lausanne) 2022; 9:835843. [PMID: 35783647 PMCID: PMC9243558 DOI: 10.3389/fmed.2022.835843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Sight is arguably the most important sense in human. Being constantly exposed to the environmental stress, irritants and pathogens, the ocular surface – a specialized functional and anatomical unit composed of tear film, conjunctival and corneal epithelium, lacrimal glands, meibomian glands, and nasolacrimal drainage apparatus – serves as a crucial front-line defense of the eye. Host defense peptides (HDPs), also known as antimicrobial peptides, are evolutionarily conserved molecular components of innate immunity that are found in all classes of life. Since the first discovery of lysozyme in 1922, a wide range of HDPs have been identified at the ocular surface. In addition to their antimicrobial activity, HDPs are increasingly recognized for their wide array of biological functions, including anti-biofilm, immunomodulation, wound healing, and anti-cancer properties. In this review, we provide an updated review on: (1) spectrum and expression of HDPs at the ocular surface; (2) participation of HDPs in ocular surface diseases/conditions such as infectious keratitis, conjunctivitis, dry eye disease, keratoconus, allergic eye disease, rosacea keratitis, and post-ocular surgery; (3) HDPs that are currently in the development pipeline for treatment of ocular diseases and infections; and (4) future potential of HDP-based clinical pharmacotherapy for ocular diseases.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
- *Correspondence: Darren Shu Jeng Ting
| | - Imran Mohammed
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Roger W. Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Harminder S. Dua
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
17
|
López-López M, Regueiro U, Bravo SB, Chantada-Vázquez MDP, Pena C, Díez-Feijoo E, Hervella P, Lema I. Shotgun Proteomics for the Identification and Profiling of the Tear Proteome of Keratoconus Patients. Invest Ophthalmol Vis Sci 2022; 63:12. [PMID: 35551575 PMCID: PMC9123485 DOI: 10.1167/iovs.63.5.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The qualitative approach followed in this study aims to obtain an extensive view of the keratoconus (KC) tear proteome, which could highlight proteins previously undetected and enlarge our knowledge of the disease's pathophysiology. Methods Twenty-five patients diagnosed with KC and 25 control subjects were studied in a prospective, cross-sectional study. KC screening examinations, including clinical and tomographic examinations, were performed on all participants. Tear samples were collected using Schirmer strips and analyzed by liquid chromatography-tandem mass spectrometry in a data-dependent workflow. A spectral count was used as a semiquantification tool. The tear proteomes of both groups were identified and profiled, and the functional interactions and biological characterization of differential proteins were analyzed using in silico tools. Results We identified a total of 232 proteins, of whom 133 were expressed in both groups’ samples; 41 were observed only in control samples and 58 were identified just in tears of patients with KC. A semiquantitative analysis showed the dysregulation of 17 proteins in the KC samples. An in silico analysis linked proteins only expressed in KC samples to oxidative stress, skin development, and apoptosis. The dysregulation of proteins involved in iron transport, inflammation, oxidative stress, and protease inhibition was observed in the semiquantitative results. Conclusions A shotgun analysis showed that the tear proteome of patients with KC differed from controls by more than one-third of the total proteins identified, highlighting the relationship of the proteins only expressed in KC tears with processes of cell death, oxidative damage, and inflammation. The underexpression of proteins involved in iron pathways might support the iron imbalance as a contributing factor to cellular damage and death in KC disease.
Collapse
Affiliation(s)
- Maite López-López
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Uxía Regueiro
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Susana Belén Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Carmen Pena
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Elío Díez-Feijoo
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Group (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Isabel Lema
- Corneal Neurodegeneration Group (RENOIR), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.,Department of Surgery and Medical-Surgical Specialties, Faculty of Optics and Optometry, University of Santiago de Compostela, Santiago de Compostela, Spain.,Galician Institute of Ophthalmology (INGO), Conxo Provincial Hospital, Santiago de Compostela, Spain
| |
Collapse
|
18
|
de Barros MRM, Chakravarti S. Pathogenesis of keratoconus: NRF2-antioxidant, extracellular matrix and cellular dysfunctions. Exp Eye Res 2022; 219:109062. [PMID: 35385756 DOI: 10.1016/j.exer.2022.109062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 11/04/2022]
Abstract
Keratoconus (KC) is a degenerative disease associated with cell and extracellular matrix (ECM) loss that causes gradual thinning and steepening of the cornea and loss of vision. Collagen cross linking with ultraviolet light treatment can strengthen the ECM and delay weakening of the cornea, but severe cases require corneal transplantation. KC is multifactorial and multigenic, but its pathophysiology is still an enigma. Multiple approaches are being pursued to elucidate the molecular changes that underlie the corneal phenotype to identify relevant genes for tailored candidate searches and to develop potential biomarkers and targets for therapeutic interventions. Recent proteomic and transcriptomic studies suggest dysregulations in oxidative stress, NRF2-regulated antioxidant programs, WNT-signaling, TGF-β, ECM and matrix metalloproteinases. This review aims to provide a broad update on the transcriptomic and proteomic studies of KC with a focus on findings that relate to oxidative stress, and dysregulations in cellular and extracellular matrix functions.
Collapse
Affiliation(s)
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Grossman School of Medicine, NY, 10016, USA; Department of Pathology, NYU Grossman School of Medicine, NY, 10016, USA.
| |
Collapse
|
19
|
Hao XD, Gao H, Xu WH, Shan C, Liu Y, Zhou ZX, Wang K, Li PF. Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Front Med (Lausanne) 2022; 8:770138. [PMID: 35141241 PMCID: PMC8818795 DOI: 10.3389/fmed.2021.770138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 01/20/2023] Open
Abstract
Keratoconus (KC) is an etiologically heterogeneous corneal ectatic disorder. To systematically display the pathogenesis of keratoconus (KC), this study reviewed all the reported genes involved in KC, and performed an enrichment analysis of genes identified at the genome, transcription, and protein levels respectively. Combined analysis of multi-level results revealed their shared genes, gene ontology (GO), and pathway terms, to explore the possible pathogenesis of KC. After an initial search, 80 candidate genes, 2,933 transcriptional differential genes, and 947 differential proteins were collected. The candidate genes were significantly enriched in extracellular matrix (ECM) related terms, Wnt signaling pathway and cytokine activities. The enriched GO/pathway terms of transcription and protein levels highlight the importance of ECM, cell adhesion, and inflammatory once again. Combined analysis of multi-levels identified 13 genes, 43 GOs, and 12 pathways. The pathogenic relationships among these overlapping factors maybe as follows. The gene mutations/variants caused insufficient protein dosage or abnormal function, together with environmental stimulation, leading to the related functions and pathways changes in the corneal cells. These included response to the glucocorticoid and reactive oxygen species; regulation of various signaling (P13K-AKT, MAPK and NF-kappaB), apoptosis and aging; upregulation of cytokines and collagen-related enzymes; and downregulation of collagen and other ECM-related proteins. These undoubtedly lead to a reduction of extracellular components and induction of cell apoptosis, resulting in the loosening and thinning of corneal tissue structure. This study, in addition to providing information about the genes involved, also provides an integrated insight into the gene-based etiology and pathogenesis of KC.
Collapse
Affiliation(s)
- Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- *Correspondence: Xiao-Dan Hao
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao, China
- Shandong Eye Hospital, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen-Hua Xu
- Department of Inspection, The Medical Faculty of Qingdao University, Qingdao, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zhi-Xia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Kun Wang
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
- Pei-Feng Li
| |
Collapse
|
20
|
Teo AWJ, Mansoor H, Sim N, Lin MTY, Liu YC. In Vivo Confocal Microscopy Evaluation in Patients with Keratoconus. J Clin Med 2022; 11:393. [PMID: 35054085 PMCID: PMC8778820 DOI: 10.3390/jcm11020393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Keratoconus is the most common primary corneal ectasia characterized by progressive focal thinning. Patients experience increased irregular astigmatism, decreased visual acuity and corneal sensitivity. Corneal collagen crosslinking (CXL), a minimally invasive procedure, is effective in halting disease progression. Historically, keratoconus research was confined to ex vivo settings. In vivo confocal microscopy (IVCM) has been used to examine the corneal microstructure clinically. In this review, we discuss keratoconus cellular changes evaluated by IVCM before and after CXL. Cellular changes before CXL include decreased keratocyte and nerve densities, disorganized subbasal nerves with thickening, increased nerve tortuosity and shortened nerve fibre length. Repopulation of keratocytes occurs up to 1 year post procedure. IVCM also correlates corneal nerve status to functional corneal sensitivity. Immediately after CXL, there is reduced nerve density and keratocyte absence due to mechanical removal of the epithelium and CXL effect. Nerve regeneration begins after 1 month, with nerve fibre densities recovering to pre-operative levels between 6 months to 1 year and remains stable up to 5 years. Nerves remain tortuous and nerve densities are reduced. Corneal sensitivity is reduced immediately postoperatively but recovers with nerve regeneration. Our article provides comprehensive review on the use of IVCM imaging in keratoconus patients.
Collapse
Affiliation(s)
- Alvin Wei Jun Teo
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore;
| | - Hassan Mansoor
- Al Shifa Trust Eye Hospital, Jhelum Road, Rawalpindi 46000, Pakistan;
| | - Nigel Sim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 168751, Singapore;
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
| | - Yu-Chi Liu
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore 168751, Singapore;
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Cornea and Refractive Surgery Group, Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
21
|
Santodomingo-Rubido J, Carracedo G, Suzaki A, Villa-Collar C, Vincent SJ, Wolffsohn JS. Keratoconus: An updated review. Cont Lens Anterior Eye 2022; 45:101559. [PMID: 34991971 DOI: 10.1016/j.clae.2021.101559] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/12/2021] [Indexed: 02/06/2023]
Abstract
Keratoconus is a bilateral and asymmetric disease which results in progressive thinning and steeping of the cornea leading to irregular astigmatism and decreased visual acuity. Traditionally, the condition has been described as a noninflammatory disease; however, more recently it has been associated with ocular inflammation. Keratoconus normally develops in the second and third decades of life and progresses until the fourth decade. The condition affects all ethnicities and both sexes. The prevalence and incidence rates of keratoconus have been estimated to be between 0.2 and 4,790 per 100,000 persons and 1.5 and 25 cases per 100,000 persons/year, respectively, with highest rates typically occurring in 20- to 30-year-olds and Middle Eastern and Asian ethnicities. Progressive stromal thinning, rupture of the anterior limiting membrane, and subsequent ectasia of the central/paracentral cornea are the most commonly observed histopathological findings. A family history of keratoconus, eye rubbing, eczema, asthma, and allergy are risk factors for developing keratoconus. Detecting keratoconus in its earliest stages remains a challenge. Corneal topography is the primary diagnostic tool for keratoconus detection. In incipient cases, however, the use of a single parameter to diagnose keratoconus is insufficient, and in addition to corneal topography, corneal pachymetry and higher order aberration data are now commonly used. Keratoconus severity and progression may be classified based on morphological features and disease evolution, ocular signs, and index-based systems. Keratoconus treatment varies depending on disease severity and progression. Mild cases are typically treated with spectacles, moderate cases with contact lenses, while severe cases that cannot be managed with scleral contact lenses may require corneal surgery. Mild to moderate cases of progressive keratoconus may also be treated surgically, most commonly with corneal cross-linking. This article provides an updated review on the definition, epidemiology, histopathology, aetiology and pathogenesis, clinical features, detection, classification, and management and treatment strategies for keratoconus.
Collapse
Affiliation(s)
| | - Gonzalo Carracedo
- Department of Optometry and Vision, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Asaki Suzaki
- Clinical Research and Development Center, Menicon Co., Ltd., Nagoya, Japan
| | - Cesar Villa-Collar
- Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Stephen J Vincent
- Contact Lens and Visual Optics Laboratory, School of Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Australia
| | - James S Wolffsohn
- School of optometry, Health and Life Sciences, Aston University, Birmingham B4 7ET, United Kingdom
| |
Collapse
|
22
|
Zaabaar E, Kyei S, Parkson Brew MAA, Boadi-Kusi SB, Assiamah F, Asiedu K. The utility of measures of anterior segment parameters of a Pentacam Scheimpflug tomographer in discriminating high myopic astigmatism from keratoconus. PLoS One 2021; 16:e0260648. [PMID: 34855828 PMCID: PMC8638937 DOI: 10.1371/journal.pone.0260648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022] Open
Abstract
The study aimed to evaluate and compare anterior segment parameters between keratoconic eyes and eyes with high myopic astigmatism using Pentacam Scheimpflug tomography. This was a retrospective cross-sectional study that included sixty keratoconic eyes (thirty-two persons) and seventy-three eyes (forty-six persons) with high myopic astigmatism with mean ages 24.72 ± 11.65years and 26.60 ± 10.69years, respectively. Twenty-three parameters from the topographic map and fifteen parameters from the Belin-Ambrosió enhanced ectasia display map of the printouts of a Scheimpflug principle-based Pentacam tomographer were evaluated for their diagnostic accuracy using Receiver Operating Characteristic (ROC) curve. All parameters except cornea volume, anterior chamber volume, and anterior chamber angle indicated a significant difference between high myopic astigmatism and keratoconic eyes. The area under the receiver operating characteristic (AUROC) of eighteen Pentacam parameters was excellent (0.9–1.0) in discriminating keratoconus from high myopic astigmatism, out of which four {anterior minimum sagittal curvature (ant. Rmin), posterior minimum sagittal curvature (post. Rmin), maximum Ambrosió relational thickness (ART max) and total deviation value (D)} indicated excellent (>90%) sensitivity and specificity in addition to the excellent AUROC values. Topographic and Belin-Ambrosió enhanced ectasia display (BAD) maps of a Scheimpflug principle-based Pentacam tomographer are useful in enhancing the diagnosis of keratoconus and may also provide valuable information in effectively screening for keratoconus cases among refractive surgery candidates with high myopic astigmatism.
Collapse
Affiliation(s)
- Ebenezer Zaabaar
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kyei
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
- * E-mail:
| | - Maame Ama Amamoah Parkson Brew
- Department of Imaging Technology and Sonography, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Bert Boadi-Kusi
- Department of Optometry and Vision Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Frank Assiamah
- Eye Department, Korle-Bu Teaching Hospital, Accra, Ghana
| | - Kofi Asiedu
- Eye Clinic Cosmopolitan Medical Center, Dworwulu, Accra, Ghana
| |
Collapse
|
23
|
Stachon T, Latta L, Seitz B, Szentmáry N. Different mRNA expression patterns in keratoglobus and pellucid marginal degeneration keratocytes. Exp Eye Res 2021; 213:108804. [PMID: 34756941 DOI: 10.1016/j.exer.2021.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Alike keratoconus (KC), keratoglobus (KG) and pellucid marginal degeneration (PMD) belong to ectatic corneal diseases. While there are numerous studies on keratoconus pathophysiology, there is no exact knowledge on genetic and pathophysiological background of KG and PMD, so far. It is not yet clarified, whether KG and PMD are independent clinical entities or represent different stages of the same disease. Our purpose was to investigate key parameters concerning collagen synthesis, intracellular LOX expression and inflammation in corneal stromal cells of KG and PMD subjects, in vitro. METHODS Normal human keratocytes of corneas from the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz and human keratocytes of KG and PMD patients were isolated and cultured as keratocytes. To examine Collagen I and V (Col I, Col V), heat shock protein 47 (Hsp47), Lysyl Oxidase (LOX), nuclear factor kappa B (NF-κB) mRNA and protein expression in all cell types, quantitative PCR and Western blot analysis has been performed. RESULTS Col5A1 mRNA expression was significantly lower in KG and PMD keratocytes and LOX mRNA expression was significantly higher in KG-keratocytes, compared to controls. Col1A1, Hsp47 and NF-κB mRNA expression and the analyzed protein expressions did not differ from controls, in KG or PMD. CONCLUSIONS Col5A1 mRNA expression is decreased in KG and PMD and LOX mRNA expression is increased in KG. Therefore, the pathophysiology of KG and PMD differs from KC and these seem to be from KC independent entities. The explanation of the peripheral corneal thinning in KG and PMD must be investigated in further studies.
Collapse
Affiliation(s)
- Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany.
| | - Lorenz Latta
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Homburg/Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Abstract
Purpose of Review To summarize the recent advances in transcriptomics and proteomics studies of keratoconus using advanced genome-wide gene and protein expression profiling techniques. Recent Findings Second-generation sequencing including RNA sequencing has been widely used to characterize the genome-wide gene expression in corneal tissues or cells affected by keratoconus. Due to different sample types, sequencing platforms, and analysis pipeline, different lists of genes have been identified to be differentially expressed in KC-affected samples. Gene ontology and pathway/network analyses have indicated the involvement of genes related with extracellular matrix, WNT-signaling, TGFβ pathway, and NRF2-regulated network. High throughput proteomics studies using mass spectrometry have uncovered many KC-related protein molecules in pathways related with cytoskeleton, cell matrix, TGFβ signaling, and extracellular matrix remodeling, consistent with gene expression profiling. Summary Both transcriptomics and proteomics studies using genome-wide gene/protein expression profiling techniques have identified significant genes/proteins that may contribute to the pathogenesis of keratoconus. These molecules may be involved in functional categories related with extracellular matrix and TGFβ signaling. It is necessary to perform comprehensive gene/protein expression studies using larger sample size, same type of samples, up-to-date platform and bioinformatics tools.
Collapse
|
25
|
Liu YC, Yam GHF, Lin MTY, Teo E, Koh SK, Deng L, Zhou L, Tong L, Mehta JS. Comparison of tear proteomic and neuromediator profiles changes between small incision lenticule extraction (SMILE) and femtosecond laser-assisted in-situ keratomileusis (LASIK). J Adv Res 2021; 29:67-81. [PMID: 33842006 PMCID: PMC8020296 DOI: 10.1016/j.jare.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction The tear proteomics and neuromediators are associated with clinical dry eye parameters following refractive surgery. Purpose To investigate and compare the tear proteomic and neuromediator profiles following small incision lenticule extraction (SMILE) versus laser-assisted in-situ keratomileusis (LASIK). Methods In this randomized controlled trial with paired-eye design, 70 patients were randomized to receive SMILE in one eye and LASIK in the other eye. Tear samples were collected preoperatively, and 1 week, 1, 3, 6 and 12 months postoperatively, and were examined for protein concentration changes using sequential window acquisition of all theoretical fragment ion mass spectrometry (SWATH-MS). The data were analyzed with DAVID Bioinformatics Resources for enriched gene ontology terms and over-represented pathways. Tear neuromediators levels were correlated with clinical parameters. Results Post-SMILE eyes had significantly better Oxford staining scores and tear break-up time (TBUT) than post-LASIK eyes at 1 and 3 months, respectively. Tear substance P and nerve growth factor levels were significantly higher in the LASIK group for 3 months and 1 year, respectively. SMILE and LASIK shared some similar biological responses postoperatively, but there was significant up-regulation in leukocyte migration and wound healing at 1 week, humoral immune response and apoptosis at 1 month, negative regulation of endopeptidase activity at 3 to 6 months, and extracellular structure organization at 1 year in the post-LASIK eyes. Tear mucin-like protein 1 and substance P levels were significantly correlated with TBUT (r = -0.47, r = -0.49, respectively). Conclusion Significant differences in the tear neuromediators and proteomics were observed between SMILE and LASIK, even though clinical dry eye signs have subsided and became comparable between 2 procedures.
Collapse
Affiliation(s)
- Yu-Chi Liu
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Gary Hin-Fai Yam
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| | - Molly Tzu-Yu Lin
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Ericia Teo
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Siew-Kwan Koh
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
| | - Lu Deng
- Department of Statistics and Applied Probability, Faculty of Science, National University of Singapore, Singapore
| | - Lei Zhou
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Ocular Proteomics, Singapore Eye Research Institute, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Louis Tong
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Ocular Surface Group, Singapore Eye Research Institute, Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
- Department of Cornea and External Eye Disease, Singapore National Eye Centre, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
26
|
Shetty R, D'Souza S, Khamar P, Ghosh A, Nuijts RMMA, Sethu S. Biochemical Markers and Alterations in Keratoconus. Asia Pac J Ophthalmol (Phila) 2020; 9:533-540. [PMID: 33323707 DOI: 10.1097/apo.0000000000000332] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Keratoconus (KC) is a corneal ectatic condition characterized by focal structural changes, resulting in progressive thinning, biomechanical weakening, and steeping of the cornea that can lead to worsening visual acuity due to irregular astigmatism and corneal scarring in more advanced cases. It is a relatively common ectatic disease of the cornea predominantly affecting the younger population. Despite its worldwide prevalence, its incidence is rather varied with a higher incidence among the Middle Eastern and South Asian population. Dysregulated corneal extracellular matrix remodeling underlies KC pathogenesis. However, a lack of absolute clarity regarding the factors that initiate and drive progression poses a significant challenge in its prevention and management. KC is a complex multifactorial disease as it is associated with a wide variety of etiological factors such as environmental stimuli/insults, oxidative stress, genetic predisposition, comorbidities, and eye rubbing. A series of studies using corneal tissues (epithelium, stroma), cultured corneal fibroblasts/keratocytes, tear fluid, aqueous humor, and blood from KC subjects has reported significant alterations in various biochemical factors such as extracellular matrix components, cellular homeostasis regulators, inflammatory factors, hormones, metabolic products, and chemical elements. It has become apparent that alterations in the biochemical mediators (related to various etiologies) could contribute to KC pathogenesis by altering the dynamics of extracellular matrix remodeling events such as collagen deposition, degradation, and cross-linking in the cornea. Determining key disease contributing biochemical mediators would aid in disease monitoring, prediction or abatement of disease progression, and development of targeted therapeutics to improve disease prognosis.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, India
| | - Arkasubhra Ghosh
- GROW Research Lab, Narayana Nethralaya Foundation, Bangalore, India
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | |
Collapse
|
27
|
Comparison of Corneal Biomechanical Properties between Post-LASIK Ectasia and Primary Keratoconus. J Ophthalmol 2020; 2020:5291485. [PMID: 33163228 PMCID: PMC7605929 DOI: 10.1155/2020/5291485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To compare the corneal biomechanical properties between post-LASIK ectasia and primary keratoconus. Methods A total of 42 eyes of 42 patients with matching age and central corneal thickness (CCT) were divided into two groups according to diagnosis of post-LASIK ectasia (PLE group; n = 21; age range: 22–47 years) and primary keratoconus (KC group; n = 21; age range: 21–47 years). The corneal biomechanical properties were assessed using Scheimpflug-based technology (Corvis ST; Oculus Optikgeräte, Wetzlar, Germany). The paired t-test and linear regression analysis were performed. Results The PLE group had significantly higher mean stiffness parameter at the first applanation (SP-A1; 76.65 ± 21.66 vs 52.72 ± 13.65, p ≤ 0.001) and mean stress-strain index (SSI) (SSI: 0.78 ± 0.16 versus 0.64 ± 0.12, p=0.001) than the KC group. SP-A1 was positively correlated with CCT in the PLE group (Pearson's r = 0.816, p ≤ 0.001), but not in the KC group (Pearson's r = −0.014, p=0.952). No statistical correlation was observed between SSI and CCT in either group (Pearson's r = 0.292, p=0.199, and Pearson's r = 0.004, p=0.985, respectively). Conclusions In our case series, KC manifested more severe than PLE in biomechanical properties. Since SSI measurements were independent of corneal thickness, it can be used for corneal biomechanical assessment.
Collapse
|
28
|
Yam GHF, Riau AK, Funderburgh ML, Mehta JS, Jhanji V. Keratocyte biology. Exp Eye Res 2020; 196:108062. [PMID: 32442558 DOI: 10.1016/j.exer.2020.108062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
The study of corneal stromal keratocytes is motivated by its strong association with corneal health and visual function. They play a dominant role in the maintenance of corneal homeostasis and transparency through the production of collagens, proteoglycans and corneal crystallins. Trauma-induced apoptosis of keratocytes and replacement by fibroblasts and myofibroblasts disrupt the stromal matrix organization, resulting in corneal haze formation and vision loss. It is, therefore, important to understand the biology and behaviours of keratocytes and the associated stromal cell types (like fibroblasts, myofibroblasts, stromal stem cells) in wound healing, corneal pathologies (including keratoconus, keratitis, endothelial disorders) as well as different ophthalmic situations (such as collagen crosslinking/photodynamic treatment, keratoplasty and refractive surgery, and topical medications). The recent development of ex vivo propagation of keratocytes and stromal stem cells, and their translational applications, either via stromal injection or incorporated in bioscaffold, have been shown to restore the corneal transparency and regenerate native stromal tissue in animal models of corneal haze and other disorders.
Collapse
Affiliation(s)
- Gary H F Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Andri K Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | | | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Riau AK, Liu YC, Yam GH, Mehta JS. Stromal keratophakia: Corneal inlay implantation. Prog Retin Eye Res 2020; 75:100780. [DOI: 10.1016/j.preteyeres.2019.100780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/28/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022]
|
30
|
Amit C, Padmanabhan P, Elchuri SV, Narayanan J. Probing the effect of matrix stiffness in endocytic signalling pathway of corneal epithelium. Biochem Biophys Res Commun 2020; 525:280-285. [PMID: 32087964 DOI: 10.1016/j.bbrc.2020.02.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 11/30/2022]
Abstract
Matrix stiffness regulates the physiology of the cells and plays an important role in maintaining its homeostasis. It has been reported to regulate cell division, proliferation, migration, extracellular uptake and various other physiological processes. The alteration in matrix stiffness has also been well reported in various disease pathologies. However, in ocular system, Keratoconus (KC) is an ideal model to study the effect of matrix stiffness on endocytosis since the progression of the disease is controlled by increasing the stromal elasticity. Our study using corneal epithelial and retinal pigment epithelial cell lines showed that ocular cells do respond to matrix stiffness by altering their morphology and endocytic uptake of FITC-Dextran 20 kDa. Further, by using KC epithelium as a clinical model, we hypothesize that change in stromal elasticity may also affect the endocytosis of KC epithelium. Our results clearly showed alteration in the expression of actin binding proteins such as Phosphorylated Cofilin, Profilin, Focal adhesion kinase, and Vinculin. Apart from cytoskeletal rearrangement proteins, we also observed endocytic proteins such as Clathrin, Caveolin1 and Rab 11 to be affected by matrix stiffness. Our study thus establishes connecting role between endocytosis and matrix stiffness which could be used to understand the pathophysiology of keratoconus that it is influenced by both mechanical and biochemical factors.
Collapse
Affiliation(s)
- Chatterjee Amit
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Tanjore, Tamil Nadu, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
31
|
Shinde V, Hu N, Renuse S, Mahale A, Pandey A, Eberhart C, Stone D, Al-Swailem SA, Maktabi A, Chakravarti S. Mapping Keratoconus Molecular Substrates by Multiplexed High-Resolution Proteomics of Unpooled Corneas. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:583-597. [PMID: 31651220 DOI: 10.1089/omi.2019.0143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Keratoconus (KCN) is a leading cause for cornea grafting worldwide. Keratoconus is a multifactorial disease that causes progressive thinning of the cornea and whose etiology is poorly understood. Several studies have used proteomics on patient tear fluids to identify potential biomarkers. However, proteome of the cornea itself has not been investigated fully. We report here new findings from a case-control study using multiplexed mass spectrometry (MS) on individual (unpooled) corneas to gain deeper insights into proteins and biomarkers relevant to keratoconus. We employed a high-pressure approach to extract total protein from individual corneas from five cases and five controls, followed by trypsin digestion and tandem mass tag (TMT) labeling. The MS-derived data were searched using the Human NCBI RefSeq protein database v92, with peptides and proteins filtered at 1% false discovery rate. A total of 3132 proteins were detected, of which 627 were altered significantly (p ≤ 0.05) in keratoconus corneas. The increases were overwhelmingly in the mTOR/PI3/AKT signal-mediated regulations of cell survival and proliferation, nonsense-mediated decay of transcripts, and proteasomal pathways. The decreases were in several extracellular matrix proteins and in many members of the complement system. Importantly, this multiplexed proteomic study of keratoconus corneas identified, to our knowledge, the largest number of corneal proteins. The novel findings include changes in pathways that regulate transcript stability, proteasomal degradation, and the complement system in corneas with keratoconus. These observations offer new prospects toward future discovery of novel molecular targets for diagnostic and therapeutic innovations for patients with keratoconus.
Collapse
Affiliation(s)
- Vishal Shinde
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Nan Hu
- Department of Ophthalmology, NYU Langone Health, New York, New York
| | - Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Alka Mahale
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Charles Eberhart
- Pathology, Ophthalmology and Oncology Department, Johns Hopkins Hospital, Baltimore, Maryland
| | - Donald Stone
- Department of Ophthalmology, Johns Hopkins University, Baltimore, Maryland
| | - Samar A Al-Swailem
- Anterior Segment Division, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Azza Maktabi
- Department of Pathology, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Shukti Chakravarti
- Department of Ophthalmology, NYU Langone Health, New York, New York.,Department of Pathology, NYU Langone Health, New York, New York
| |
Collapse
|