1
|
Sung D, Choi G, Ahn M, Byun H, Kim TY, Lee H, Lee ZW, Park JY, Jung YH, Han HJ, Choi SH. Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus. Nucleic Acids Res 2024:gkae1238. [PMID: 39704106 DOI: 10.1093/nar/gkae1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses. Consequently, 89 TFs affecting more than one phenotype of V. vulnificus were identified. Of these, 59 TFs affected the in vitro survival including growth, stress resistance, biofilm formation and motility, and 64 TFs affected the virulence of V. vulnificus. Particularly, 27 of the 64 TFs enhanced the in vitro hemolytic or cytotoxic activities, and 8 of the 27 TFs also increased the in vivo brine shrimp or murine infectivities of V. vulnificus. Among the eight TFs, HlyU, IscR, NagC, MetJ and Tet2 did not affect the growth of V. vulnificus but still regulated the expression of major exotoxin genes, including rtxA, vvhA and plpA, thereby emerging as potential drug targets for anti-virulence therapies with low selective pressure for developing resistance. Altogether, this study characterized the functions of TFs at a genome-wide scale and identified novel targets to control the virulence of V. vulnificus.
Collapse
Affiliation(s)
- Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Ahn
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hokyung Byun
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Zee-Won Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Zhang B, Xu J, Sun M, Yu P, Ma Y, Xie L, Chen L. Comparative secretomic and proteomic analysis reveal multiple defensive strategies developed by Vibrio cholerae against the heavy metal (Cd 2+, Ni 2+, Pb 2+, and Zn 2+) stresses. Front Microbiol 2023; 14:1294177. [PMID: 37954246 PMCID: PMC10637575 DOI: 10.3389/fmicb.2023.1294177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Vibrio cholerae is a common waterborne pathogen that can cause pandemic cholera in humans. The bacterium with heavy metal-tolerant phenotypes is frequently isolated from aquatic products, however, its tolerance mechanisms remain unclear. In this study, we investigated for the first time the response of such V. cholerae isolates (n = 3) toward the heavy metal (Cd2+, Ni2+, Pb2+, and Zn2+) stresses by comparative secretomic and proteomic analyses. The results showed that sublethal concentrations of the Pb2+ (200 μg/mL), Cd2+ (12.5 μg/mL), and Zn2+ (50 μg/mL) stresses for 2 h significantly decreased the bacterial cell membrane fluidity, but increased cell surface hydrophobicity and inner membrane permeability, whereas the Ni2+ (50 μg/mL) stress increased cell membrane fluidity (p < 0.05). The comparative secretomic and proteomic analysis revealed differentially expressed extracellular and intracellular proteins involved in common metabolic pathways in the V. cholerae isolates to reduce cytotoxicity of the heavy metal stresses, such as biosorption, transportation and effluxing, extracellular sequestration, and intracellular antioxidative defense. Meanwhile, different defensive strategies were also found in the V. cholerae isolates to cope with different heavy metal damage. Remarkably, a number of putative virulence and resistance-associated proteins were produced and/or secreted by the V. cholerae isolates under the heavy metal stresses, suggesting an increased health risk in the aquatic products.
Collapse
Affiliation(s)
- Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuming Ma
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. J Biol Chem 2023; 299:105147. [PMID: 37567478 PMCID: PMC10509353 DOI: 10.1016/j.jbc.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
4
|
Ko D, Sung D, Kim TY, Choi G, Bang YJ, Choi SH. CarRS Two-Component System Essential for Polymyxin B Resistance of Vibrio vulnificus Responds to Multiple Host Environmental Signals. Microbiol Spectr 2023; 11:e0030523. [PMID: 37289068 PMCID: PMC10433830 DOI: 10.1128/spectrum.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Enteropathogenic bacteria express two-component systems (TCSs) to sense and respond to host environments, developing resistance to host innate immune systems like cationic antimicrobial peptides (CAMPs). Although an opportunistic human pathogen Vibrio vulnificus shows intrinsic resistance to the CAMP-like polymyxin B (PMB), its TCSs responsible for resistance have barely been investigated. Here, a mutant exhibiting a reduced growth rate in the presence of PMB was screened from a random transposon mutant library of V. vulnificus, and response regulator CarR of the CarRS TCS was identified as essential for its PMB resistance. Transcriptome analysis revealed that CarR strongly activates the expression of the eptA, tolCV2, and carRS operons. In particular, the eptA operon plays a major role in developing the CarR-mediated PMB resistance. Phosphorylation of CarR by the sensor kinase CarS is required for the regulation of its downstream genes, leading to the PMB resistance. Nevertheless, CarR directly binds to specific sequences in the upstream regions of the eptA and carRS operons, regardless of its phosphorylation. Notably, the CarRS TCS alters its own activation state by responding to several environmental stresses, including PMB, divalent cations, bile salts, and pH change. Furthermore, CarR modulates the resistance of V. vulnificus to bile salts and acidic pH among the stresses, as well as PMB. Altogether, this study suggests that the CarRS TCS, in responding to multiple host environmental signals, could provide V. vulnificus with the benefit of surviving within the host by enhancing its optimal fitness during infection. IMPORTANCE Enteropathogenic bacteria have evolved multiple TCSs to recognize and appropriately respond to host environments. CAMP is one of the inherent host barriers that the pathogens encounter during the course of infection. In this study, the CarRS TCS of V. vulnificus was found to develop resistance to PMB, a CAMP-like antimicrobial peptide, by directly activating the expression of the eptA operon. Although CarR binds to the upstream regions of the eptA and carRS operons regardless of phosphorylation, phosphorylation of CarR is required for the regulation of the operons, resulting in the PMB resistance. Furthermore, the CarRS TCS determines the resistance of V. vulnificus to bile salts and acidic pH by differentially regulating its own activation state in response to these environmental stresses. Altogether, the CarRS TCS responds to multiple host-related signals, and thus could enhance the survival of V. vulnificus within the host, leading to successful infection.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Ye-Ji Bang
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Getz LJ, Brown JM, Sobot L, Chow A, Mahendrarajah J, Thomas N. Attenuation of a DNA cruciform by a conserved regulator directs T3SS1 mediated virulence in Vibrio parahaemolyticus. Nucleic Acids Res 2023; 51:6156-6171. [PMID: 37158250 PMCID: PMC10325908 DOI: 10.1093/nar/gkad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Pathogenic Vibrio species account for 3-5 million annual life-threatening human infections. Virulence is driven by bacterial hemolysin and toxin gene expression often positively regulated by the winged helix-turn-helix (wHTH) HlyU transcriptional regulator family and silenced by histone-like nucleoid structural protein (H-NS). In the case of Vibrio parahaemolyticus, HlyU is required for virulence gene expression associated with type 3 Secretion System-1 (T3SS1) although its mechanism of action is not understood. Here, we provide evidence for DNA cruciform attenuation mediated by HlyU binding to support concomitant virulence gene expression. Genetic and biochemical experiments revealed that upon HlyU mediated DNA cruciform attenuation, an intergenic cryptic promoter became accessible allowing for exsA mRNA expression and initiation of an ExsA autoactivation feedback loop at a separate ExsA-dependent promoter. Using a heterologous E. coli expression system, we reconstituted the dual promoter elements which revealed that HlyU binding and DNA cruciform attenuation were strictly required to initiate the ExsA autoactivation loop. The data indicate that HlyU acts to attenuate a transcriptional repressive DNA cruciform to support T3SS1 virulence gene expression and reveals a non-canonical extricating gene regulation mechanism in pathogenic Vibrio species.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Justin M Brown
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Lauren Sobot
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Alexandra Chow
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Jastina Mahendrarajah
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
- Department of Medicine, Faculty of Medicine, Dalhousie University. Halifax, NS, Canada
| |
Collapse
|
6
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|
7
|
Calkins AL, Demey LM, Rosenthal BM, DiRita VJ, Biteen JS. Achieving Single-Molecule Tracking of Subcellular Regulation in Bacteria during Real-Time Environmental Perturbations. Anal Chem 2023; 95:774-783. [PMID: 36576807 DOI: 10.1021/acs.analchem.2c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteria rely on protein systems for regulation in response to external environmental signals. Single-molecule fluorescence imaging and tracking has elucidated the complex mechanism of these protein systems in a variety of bacteria. We recently investigated Vibrio cholerae, the Gram-negative bacterium responsible for the human cholera disease, and its regulation of the production of toxins and virulence factors through the membrane-localized transcription factors TcpP and ToxR. These experiments determined that TcpP and ToxR work cooperatively under steady-state conditions, but measurements of how these dynamical interactions change over the course of environmental perturbations were precluded by the traditional preparation of bacterial cells confined on agarose pads. Here, we address this gap in technology and access single-molecule dynamics during real-time changes by implementing two alternative sample preparations: microfluidic devices and chitosan-coated coverslips. We report the first demonstration of single-molecule tracking within live bacterial cells in a microfluidic device. Additionally, using the chitosan-coated coverslips, we show that real-time environmental changes impact TcpP-PAmCherry dynamics, activating a virulence condition in the bacteria about 45 min after dropping to pH 6 and about 20 min after inducing ToxR expression. These new technology advances open our ability for new experiments studying a variety of bacteria with single-molecule imaging and tracking during real-time environmental perturbations.
Collapse
Affiliation(s)
- Anna L Calkins
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Lucas M Demey
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Brooke M Rosenthal
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| | - Victor J DiRita
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48104, United States
| |
Collapse
|
8
|
Targeting Virulence Genes Expression in Vibrio vulnificus by Alternative Carbon Sources. Int J Mol Sci 2022; 23:ijms232315278. [PMID: 36499602 PMCID: PMC9737408 DOI: 10.3390/ijms232315278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/11/2022] Open
Abstract
Vibrio vulnificus is an opportunistic human pathogen causing self-limiting gastroenteritis, life-threatening necrotizing soft tissue infection, and fulminating septicaemia. An increasing rate of infections has been reported worldwide, characterized by sudden onset of sepsis and/or rapid progression to irreversible tissue damage or death. Timely intervention is essential to control the infection, and it is based on antibiotic therapy, which does not always result in the effective and rapid blocking of virulence. Inhibitors of essential virulence regulators have been reported in the last years, but none of them has been further developed, so far. We aimed to investigate whether exposure to some carbon compounds, mostly easily metabolizable, could result in transcriptional down-regulation of virulence genes. We screened various carbon sources already available for human use (thus potentially easy to be repurposed), finding some of them (including mannitol and glycerol) highly effective in down-regulating, in vitro and ex-vivo, the mRNA levels of several relevant -even essential- virulence factors (hlyU, lrp, rtxA, vvpE, vvhA, plpA, among others). This paves the way for further investigations aiming at their development as virulence inhibitors and to unveil mechanisms explaining such observed effects. Moreover, data suggesting the existence of additional regulatory networks of some virulence genes are reported.
Collapse
|
9
|
Su X, Yu H, Wang X, Zhang C, Wang H, Kong X, Qu Y, Luan Y, Meng Y, Guan J, Song G, Wang L, Song W, Zhao Y. Cyanidin chloride protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting Sortase A. Virulence 2022; 13:1434-1445. [PMID: 35983964 PMCID: PMC9397467 DOI: 10.1080/21505594.2022.2112831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been developing rapidly in recent years. It poses a severe peril to global health care, and the new strategies to against the MRSA is urgently needed. Sortase A (SrtA) regulates the anchoring of many surface proteins. Compounds repress Staphylococcus aureus (S. aureus) cysteine transpeptidase SrtA are considered adequate potent virulence inhibitors. Then, we describe the identification of an effective SrtA inhibitor, cyanidin chloride, a bioflavonoid compound isolated from various plants. It has a reversible inhibitory effect on SrtA activity at an IC50 of 21.91 μg/mL. As a SrtA inhibitor, cyanidin chloride antagonizes SrtA-related virulence phenotypes due to its breadth and specificity, including fibrinogen adhesion, A549 cell invasion, biofilm formation, and surface protein (SpA) anchoring. Subsequently, molecular docking and fluorescence quenching revealed that SrtA and cyanidin chloride had robust mutual affinity. Further mechanistic studies revealed that Arg-197, Gly-167, and Sep-116 were the key-binding sites mediating the interaction between SrtA and cyanidin chloride. Notably, a significant therapeutic effect of cyanidin chloride in vivo was also observed on the mouse pneumonia model induced by MRSA. In conclusion, our study indicates that cyanidin chloride potentially represents a new candidate SrtA inhibitor for S. aureus and potentially be developed as a new antivirulence agent.
Collapse
Affiliation(s)
- Xin Su
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangqian Yu
- Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xingye Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chi Zhang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Heming Wang
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiangri Kong
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,College of Animal Science, Jilin University, Changchun, China
| | - Yishen Qu
- Endocrinology Department, Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- College of Animal Science, Jilin University, Changchun, China
| | - Ying Meng
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Guangqi Song
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Li Wang
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,CONTACT Li Wang
| | - Wu Song
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Wu Song
| | - Yicheng Zhao
- College of Clinical Medicine, Changchun University of Chinese Medicine, Changchun, China,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,Yicheng Zhao
| |
Collapse
|
10
|
Choi G, Choi SH. Complex regulatory networks of virulence factors in Vibrio vulnificus. Trends Microbiol 2022; 30:1205-1216. [PMID: 35753865 DOI: 10.1016/j.tim.2022.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/13/2023]
Abstract
The fulminating zoonotic pathogen Vibrio vulnificus is the causative agent of fatal septicemia in humans and fish, raising tremendous economic burdens in healthcare and the aquaculture industry. V. vulnificus exploits various virulence factors, including biofilm-related factors and exotoxins, for its persistence in nature and pathogenesis during infection. Substantial studies have found that the expression of virulence factors is coordinately regulated by numerous transcription factors that recognize the changing environments. Here, we summarize and discuss the recent discoveries of the physiological roles of virulence factors in V. vulnificus and their regulation by transcription factors in response to various environmental signals. This expanded understanding of molecular pathogenesis would provide novel clues to develop an effective antivirulence therapy against V. vulnificus infection.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. Int J Mol Sci 2022; 23:ijms23042179. [PMID: 35216300 PMCID: PMC8879271 DOI: 10.3390/ijms23042179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
The different niches through which bacteria move during their life cycle require a fast response to the many environmental queues they encounter. The sensing of these stimuli and their correct response is driven primarily by transcriptional regulators. This kind of protein is involved in sensing a wide array of chemical species, a process that ultimately leads to the regulation of gene transcription. The allosteric-coupling mechanism of sensing and regulation is a central aspect of biological systems and has become an important field of research during the last decades. In this review, we summarize the state-of-the-art techniques applied to unravel these complex mechanisms. We introduce a roadmap that may serve for experimental design, depending on the answers we seek and the initial information we have about the system of study. We also provide information on databases containing available structural information on each family of transcriptional regulators. Finally, we discuss the recent results of research about the allosteric mechanisms of sensing and regulation involving many transcriptional regulators of interest, highlighting multipronged strategies and novel experimental techniques. The aim of the experiments discussed here was to provide a better understanding at a molecular level of how bacteria adapt to the different environmental threats they face.
Collapse
|
12
|
Hwang SH, Im H, Choi SH. A Master Regulator BrpR Coordinates the Expression of Multiple Loci for Robust Biofilm and Rugose Colony Development in Vibrio vulnificus. Front Microbiol 2021; 12:679854. [PMID: 34248894 PMCID: PMC8268162 DOI: 10.3389/fmicb.2021.679854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus, a fulminating human pathogen, forms biofilms to enhance its survival in nature and pathogenicity during host infection. BrpR is the transcriptional regulator governing robust biofilm and rugose colony formation in V. vulnificus, but little is known about both the direct regulon of BrpR and the role of BrpR in regulation of downstream genes. In this study, transcript analyses revealed that BrpR is highly expressed and thus strongly regulates the downstream gene in the stationary and elevated cyclic di-GMP conditions. Transcriptome analyses discovered the genes, whose expression is affected by BrpR but not by the downstream regulator BrpT. Two unnamed adjacent genes (VV2_1626-1627) were newly identified among the BrpR regulon and designated as brpL and brpG in this study. Genetic analyses showed that the deletion of brpL and brpG impairs the biofilm and rugose colony formation, indicating that brpLG plays a crucial role in the development of BrpR-regulated biofilm phenotypes. Comparison of the colony morphology and exopolysaccharide (EPS) production suggested that although the genetic location and regulation of brpLG are distinct from the brp locus, brpABCDFHIJK (VV2_1574-1582), brpLG is also responsible for the robust EPS production together with the brp locus genes. Electrophoretic mobility shift assays and DNase I protection assays demonstrated that BrpR regulates the expression of downstream genes in distinct loci by directly binding to their upstream regions, revealing a palindromic binding sequence. Altogether, this study suggests that BrpR is a master regulator coordinating the expression of multiple loci responsible for EPS production and thus, contributing to the robust biofilm and rugose colony formation of V. vulnificus.
Collapse
Affiliation(s)
- Seung-Ho Hwang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
13
|
Choi G, Kim D, Im H, Choi SH. A Nitric Oxide-Responsive Transcriptional Regulator NsrR Cooperates With Lrp and CRP to Tightly Control the hmpA Gene in Vibrio vulnificus. Front Microbiol 2021; 12:681196. [PMID: 34093504 PMCID: PMC8175989 DOI: 10.3389/fmicb.2021.681196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is an important antimicrobial effector produced by the host innate immune system to counteract invading pathogens. To survive and establish a successful infection, a fulminating human pathogen Vibrio vulnificus expresses the hmpA gene encoding an NO dioxygenase in an NO-responsive manner. In this study, we identified an Rrf2-family transcriptional regulator NsrR that is predicted to contain the Fe-S cluster coordinated by three cysteine residues. Transcriptome analysis showed that NsrR controls the expression of multiple genes potentially involved in nitrosative stress responses. Particularly, NsrR acts as a strong repressor of hmpA transcription and relieves the repression of hmpA upon exposure to NO. Notably, nsrR and hmpA are transcribed divergently, and their promoter regions overlap with each other. Molecular biological analyses revealed that NsrR directly binds to this overlapping promoter region, which is alleviated by loss of the Fe-S cluster, leading to the subsequent derepression of hmpA under nitrosative stress. We further found that a leucine-responsive regulatory protein (Lrp) negatively regulates hmpA in an NsrR-dependent manner by directly binding to the promoter region, presumably resulting in a DNA conformation change to support the repression by NsrR. Meanwhile, a cyclic AMP receptor protein (CRP) positively regulates hmpA probably through repression of nsrR and lrp by directly binding to each promoter region in a sequential cascade. Altogether, this collaborative regulation of NsrR along with Lrp and CRP enables an elaborate control of hmpA transcription, contributing to survival under host-derived nitrosative stress and thereby the pathogenesis of V. vulnificus.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Dukyun Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Kim SM, Park J, Kim MS, Song H, Jo A, Park H, Kim TS, Choi SH, Park SB. Phenotypic Discovery of an Antivirulence Agent against Vibrio vulnificus via Modulation of Quorum-Sensing Regulator SmcR. ACS Infect Dis 2020; 6:3076-3082. [PMID: 33086782 DOI: 10.1021/acsinfecdis.0c00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An antivirulence agent against Vibrio vulnificus named quoromycin (QM) was discovered by a phenotype-based elastase inhibitor screening. Using the fluorescence difference in two-dimensional gel electrophoresis (FITGE) approach, SmcR, a quorum-sensing master regulator and homologue of LuxR, was identified as the target protein of QM. We confirmed that the direct binding of QM to SmcR inhibits the quorum-sensing signaling pathway by controlling the DNA-binding affinity of SmcR and thus effectively alleviates the virulence of V. vulnificus in vitro and in vivo. QM can be regarded as a novel antivirulence agent for the treatment of V. vulnificus infection.
Collapse
Affiliation(s)
- Seung Min Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jongmin Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Myun Soo Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Heebum Song
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Ala Jo
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Hankum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Tae Sung Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sang Ho Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
15
|
Spatiotemporal Regulation of Vibrio Exotoxins by HlyU and Other Transcriptional Regulators. Toxins (Basel) 2020; 12:toxins12090544. [PMID: 32842612 PMCID: PMC7551375 DOI: 10.3390/toxins12090544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
After invading a host, bacterial pathogens secrete diverse protein toxins to disrupt host defense systems. To ensure successful infection, however, pathogens must precisely regulate the expression of those exotoxins because uncontrolled toxin production squanders energy. Furthermore, inappropriate toxin secretion can trigger host immune responses that are detrimental to the invading pathogens. Therefore, bacterial pathogens use diverse transcriptional regulators to accurately regulate multiple exotoxin genes based on spatiotemporal conditions. This review covers three major exotoxins in pathogenic Vibrio species and their transcriptional regulation systems. When Vibrio encounters a host, genes encoding cytolysin/hemolysin, multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin, and secreted phospholipases are coordinately regulated by the transcriptional regulator HlyU. At the same time, however, they are distinctly controlled by a variety of other transcriptional regulators. How this coordinated but distinct regulation of exotoxins makes Vibrio species successful pathogens? In addition, anti-virulence strategies that target the coordinating master regulator HlyU and related future research directions are discussed.
Collapse
|
16
|
A MARTX Toxin rtxA Gene Is Controlled by Host Environmental Signals through a CRP-Coordinated Regulatory Network in Vibrio vulnificus. mBio 2020; 11:mBio.00723-20. [PMID: 32723914 PMCID: PMC7387792 DOI: 10.1128/mbio.00723-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus. We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA. Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU. This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host. A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus. H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, PrtxA. Phased hypersensitivity resulting from DNase I cleavage of the PrtxA regulatory region suggests that Lrp probably induces DNA bending in PrtxA. Lrp activates PrtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to PrtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses PrtxA, and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of PrtxA, which presumably alters the DNA conformation in PrtxA and thus represses rtxA. Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.
Collapse
|
17
|
Choi G, Jang KK, Lim JG, Lee ZW, Im H, Choi SH. The transcriptional regulator IscR integrates host-derived nitrosative stress and iron starvation in activation of the vvhBA operon in Vibrio vulnificus. J Biol Chem 2020; 295:5350-5361. [PMID: 32169898 PMCID: PMC7170529 DOI: 10.1074/jbc.ra120.012724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
For successful infection of their hosts, pathogenic bacteria recognize host-derived signals that induce the expression of virulence factors in a spatiotemporal manner. The fulminating food-borne pathogen Vibrio vulnificus produces a cytolysin/hemolysin protein encoded by the vvhBA operon, which is a virulence factor preferentially expressed upon exposure to murine blood and macrophages. The Fe-S cluster containing transcriptional regulator IscR activates the vvhBA operon in response to nitrosative stress and iron starvation, during which the cellular IscR protein level increases. Here, electrophoretic mobility shift and DNase I protection assays revealed that IscR directly binds downstream of the vvhBA promoter P vvhBA , which is unusual for a positive regulator. We found that in addition to IscR, the transcriptional regulator HlyU activates vvhBA transcription by directly binding upstream of P vvhBA , whereas the histone-like nucleoid-structuring protein (H-NS) represses vvhBA by extensively binding to both downstream and upstream regions of its promoter. Of note, the binding sites of IscR and HlyU overlapped with those of H-NS. We further substantiated that IscR and HlyU outcompete H-NS for binding to the P vvhBA regulatory region, resulting in the release of H-NS repression and vvhBA induction. We conclude that concurrent antirepression by IscR and HlyU at regions both downstream and upstream of P vvhBA provides V. vulnificus with the means of integrating host-derived signal(s) such as nitrosative stress and iron starvation for precise regulation of vvhBA transcription, thereby enabling successful host infection.
Collapse
Affiliation(s)
- Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea
| | - Kyung Ku Jang
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea
| | - Jong Gyu Lim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea
| | - Zee-Won Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea
| | - Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, and Center for Food Safety and Toxicology, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|