1
|
Wu D, Zhou J, Song L, Zheng Q, Wang T, Ren Z, Huang Y, Liu S, Liu L. A multi-level investigation of the genetic relationship between gastroesophageal reflux disease and lung cancer. Transl Lung Cancer Res 2024; 13:2373-2387. [PMID: 39430334 PMCID: PMC11484728 DOI: 10.21037/tlcr-24-345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 10/22/2024]
Abstract
Background Observational studies have revealed a potential association between gastroesophageal reflux disease (GERD) and lung cancer (LC), but the genetic role in their comorbidity have not been fully elucidated. This study aimed to comprehensively dissect the genetic link underlying GERD and LC. Methods Using large-scale genome-wide association study (GWAS) data, we investigated shared genetic architecture between GERD and LC. Our analyses encompassed genetic correlation, cross-trait meta-analysis, transcriptome-wide association studies (TWASs), and the evaluation of the causality though a bidirectional Mendelian randomization (MR) analysis with sufficient sensitivities. Results We identified a significant genome-wide genetic correlation between GERD and overall LC (rg =0.33, P=1.58×10-14), as well as across other subtype-specific LC (rg ranging from 0.19 to 0.39). After separating the whole genome into approximately 2,353 independent regions, 5 specific regions demonstrated significant local genetic correlation, with most significant region located at 9q33.3. Cross-trait meta-analysis revealed 22 pleiotropic loci between GERD and LC, including 3 novel loci (rs537160, rs10156445, and rs17391694). TWASs discovered a total of 49 genes shared in multiple tissues, such as lung tissues, esophagus muscularis, esophagus mucosa, and esophagus gastroesophageal junction. MR analysis suggested a significantly causal relationship between GERD and overall LC [odds ratio (OR) =1.34, 95% confidence interval (CI): 1.19-1.51], as well as other subtype-specific LC (OR ranging from 1.25 to 1.76). No evidence supports a significant causal effect of LC on GERD. Conclusions Our findings suggest intrinsic genetic correlation underlying GERD and LC, which provides valuable insights for screening and management of LC in individuals with GERD.
Collapse
Affiliation(s)
- Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhou
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lujia Song
- Department of Pulmonary and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, and Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Quan Zheng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengyong Wang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhizhen Ren
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuchen Huang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Shuqiao Liu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Peretz CAC, Kennedy VE, Walia A, Delley CL, Koh A, Tran E, Clark IC, Hayford CE, D'Amato C, Xue Y, Fontanez KM, May-Zhang AA, Smithers T, Agam Y, Wang Q, Dai HP, Roy R, Logan AC, Perl AE, Abate A, Olshen A, Smith CC. Multiomic single cell sequencing identifies stemlike nature of mixed phenotype acute leukemia. Nat Commun 2024; 15:8191. [PMID: 39294124 PMCID: PMC11411136 DOI: 10.1038/s41467-024-52317-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
Despite recent work linking mixed phenotype acute leukemia (MPAL) to certain genetic lesions, specific driver mutations remain undefined for a significant proportion of patients and no genetic subtype is predictive of clinical outcomes. Moreover, therapeutic strategy for MPAL remains unclear, and prognosis is overall poor. We performed multiomic single cell profiling of 14 newly diagnosed adult MPAL patients to characterize the inter- and intra-tumoral transcriptional, immunophenotypic, and genetic landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. Despite this, we find that MPAL blasts express a shared stem cell-like transcriptional profile indicative of high differentiation potential. Patients with the highest differentiation potential demonstrate inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in the most stem-like MPAL cells, is applicable to bulk RNA sequencing data and is predictive of survival in an independent patient cohort, suggesting a potential strategy for clinical risk stratification.
Collapse
Affiliation(s)
- Cheryl A C Peretz
- Division of Hematology and Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Vanessa E Kennedy
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Anushka Walia
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cyrille L Delley
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Andrew Koh
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elaine Tran
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | | | | | - Yi Xue
- Fluent Biosciences Inc., Watertown, MA, USA
| | | | | | | | - Yigal Agam
- Fluent Biosciences Inc., Watertown, MA, USA
| | - Qian Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ritu Roy
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Logan
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alexander E Perl
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Catherine C Smith
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Division of Hematology and Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells 2022; 11:cells11132051. [PMID: 35805134 PMCID: PMC9265377 DOI: 10.3390/cells11132051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea (OSA) syndrome is characterized by chronic intermittent hypoxia and is associated with an increased risk of all-cause mortality, including cancer mortality. Hepatocellular carcinoma (HCC) is the most common type of liver cancer, characterized by increasing incidence and high mortality. However, the link between HCC and OSA-related chronic intermittent hypoxia remains unclear. Herein, we used a diethylnitrosamine (DEN)-induced HCC model to investigate whether OSA-related chronic intermittent hypoxia has an impact on HCC progression. To elucidate the associated mechanisms, we first evaluated the hypoxia status in the DEN-induced HCC model. Next, to simulate OSA-related intermittent hypoxia, we exposed cirrhotic rats with HCC to intermittent hypoxia during six weeks. We performed histopathological, immunohistochemical, RT-qPCR, and RNA-seq analysis. Chronic DEN injections strongly promoted cell proliferation, fibrosis, disorganized vasculature, and hypoxia in liver tissue, which mimics the usual events observed during human HCC development. Intermittent hypoxia further increased cell proliferation in DEN-induced HCC, which may contribute to an increased risk of HCC progression. In conclusion, our observations suggest that chronic intermittent hypoxia may be a factor worsening the prognosis of HCC.
Collapse
|
4
|
Cao L, Ren C, Zhang G, Li X, Chen B, Li K, Li C, Mok H, Wang Y, Wen L, Jia M, Wei G, Lin J, Liao N. Characteristics of MYC Amplification and Their Association with Clinicopathological and Molecular Factors in Patients with Breast Cancer. DNA Cell Biol 2022; 41:521-538. [PMID: 35475703 DOI: 10.1089/dna.2020.6487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MYC amplification is detected in ∼15% of breast tumors and is associated with poor prognosis by mediating acquired resistance to anticancer therapies. This study aimed to determine the prevalence of MYC amplifications in Chinese women with breast cancer (BRCA) and investigate the correlation between MYC amplification and clinicopathological and molecular characteristics and its clinical implications. We analyzed MYC alterations in tissue specimens from 410 women diagnosed with BRCA in our hospital from June 1, 2017 to September 27, 2018. We compared our results with publicly available data from The Cancer Genome Atlas (TCGA) BRCA cohort (n = 1079). MYC amplification was identified in 12.4% (51/410) of our cohort, with mean copy number (CN) of 4.42 (range: 2.84-11.27). In TCGA cohort, MYC amplification was identified in 21.2% (229/1079) and was associated with age, estrogen receptor status, progesterone receptor status, human epidermal growth factor receptor 2 (HER2) status, and molecular subtype, whereas in our cohort, MYC amplification was associated with smaller tumor size (T1-2, p = 0.023) and higher Ki-67 levels (≥20%; p = 0.031). Analysis of molecular profiles revealed that MYC-amplified breast tumors had significantly more concurrent CN variations compared with MYC nonamplified BRCA in both Guangdong Provincial People's Hospital (GDPH) and TCGA cohorts (p < 0.001). Pathway mapping analysis demonstrated that MYC-amplified tumors had more mutations involved in 15 different but interrelated pathways critical in DNA repair, cell cycle, and cell proliferation. Patients in TCGA cohort with MYC-amplified hormone receptor (HR)-positive/HER2-positive BRCA (p = 0.038) and MYC nonamplified triple-negative BRCA (p = 0.027) had significantly shorter overall survival. In conclusion, this study contributes to a better understanding that MYC-amplified breast tumors had distinct clinicopathological and molecular features compared with MYC nonamplified breast tumors. Further research with a larger sample size is necessary to further elucidate the clinical and survival implications of MYC amplifications.
Collapse
Affiliation(s)
- Li Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guochun Zhang
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuerui Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cheukfai Li
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yulei Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lingzhu Wen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minghan Jia
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guangnan Wei
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiali Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
The role of RNA binding proteins in hepatocellular carcinoma. Adv Drug Deliv Rev 2022; 182:114114. [PMID: 35063534 DOI: 10.1016/j.addr.2022.114114] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of overall cancer deaths worldwide with limited therapeutic options. Due to the heterogeneity of HCC pathogenesis, the molecular mechanisms underlying HCC development are not fully understood. Emerging evidence indicates that RNA-binding proteins (RBPs) play a vital role throughout hepatocarcinogenesis. Thus, a deeper understanding of how RBPs contribute to HCC progression will provide new tools for early diagnosis and prognosis of this devastating disease. In this review, we summarize the tumor suppressive and oncogenic roles of RBPs and their roles in hepatocarcinogenesis. The diagnostic and therapeutic potential of RBPs in HCC, including their limitations, are also discussed.
Collapse
|
6
|
Su K, Yu Q, Shen R, Sun SY, Moreno CS, Li X, Qin ZS. Pan-cancer analysis of pathway-based gene expression pattern at the individual level reveals biomarkers of clinical prognosis. CELL REPORTS METHODS 2021; 1:100050. [PMID: 34671755 PMCID: PMC8525796 DOI: 10.1016/j.crmeth.2021.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/07/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023]
Abstract
Identifying biomarkers to predict the clinical outcomes of individual patients is a fundamental problem in clinical oncology. Multiple single-gene biomarkers have already been identified and used in clinics. However, multiple oncogenes or tumor-suppressor genes are involved during the process of tumorigenesis. Additionally, the efficacy of single-gene biomarkers is limited by the extensively variable expression levels measured by high-throughput assays. In this study, we hypothesize that in individual tumor samples, the disruption of transcription homeostasis in key pathways or gene sets plays an important role in tumorigenesis and has profound implications for the patient's clinical outcome. We devised a computational method named iPath to identify, at the individual-sample level, which pathways or gene sets significantly deviate from their norms. We conducted a pan-cancer analysis and demonstrated that iPath is capable of identifying highly predictive biomarkers for clinical outcomes, including overall survival, tumor subtypes, and tumor-stage classifications.
Collapse
Affiliation(s)
- Kenong Su
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
| | - Qi Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Ronglai Shen
- Department of Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10017, USA
| | - Shi-Yong Sun
- Department of Hematology & Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carlos S. Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaoxian Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zhaohui S. Qin
- Department of Computer Science, Emory University, Atlanta, GA 30322, USA
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Yu S, Li L, Cai H, He B, Gao Y, Li Y. Overexpression of NELFE contributes to gastric cancer progression via Wnt/β-catenin signaling-mediated activation of CSNK2B expression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:54. [PMID: 33526068 PMCID: PMC7851912 DOI: 10.1186/s13046-021-01848-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
Background Accumulating evidence has highlighted the importance of negative elongation factor complex member E (NELFE) in tumorigenesis. However, the relationship between NELFE and gastric cancer (GC) remains unclear. This study aimed to explore the expression pattern and specific function of NELFE in GC. Methods NELFE expression was evaluated by immunohistochemistry and qRT-PCR in GC tissues, respectively. Cell proliferation, migration and invasion were measured by CCK-8, colony formation, transwell assays, and nude mice model. Bioinformatics analysis was performed to search potential target genes of NELFE, and a Cignal Finder 10-Pathway Reporter Array was used to explore potential signaling pathways regulated by NELFE. Dual-luciferase reporter assays, qRT-PCR and western blotting were conducted to verify their regulatory relationship. The expression correlations among NELFE, β-catenin and CSNK2B were further explored by immunohistochemistry on consecutive resections. Results NELFE was significantly overexpressed in GC tissues both in protein and mRNA level and negatively correlated with the prognosis of GC patients. Gain- and loss-of-function experiments showed that NELFE potentiated GC cell proliferation and metastasis in vitro and in vivo. CSNK2B was identified as a downstream effector of NELFE. Wnt/β-catenin signaling may mediate the regulation of CSNK2B by NELFE. In addition, NELFE, β-catenin and CSNK2B were all remarkably upregulated in tumor tissues compared with adjacent normal tissues, and their expression levels in GC were positively correlated with each other. Conclusion Our findings reveal a new NELFE-Wnt/β-catenin-CSNK2B axis to promote GC progression and provide new candidate targets against this disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01848-3.
Collapse
Affiliation(s)
- Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Bin He
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
8
|
Schaafsma E, Zhao Y, Zhang L, Li Y, Cheng C. MYC Activity Inference Captures Diverse Mechanisms of Aberrant MYC Pathway Activation in Human Cancers. Mol Cancer Res 2020; 19:414-428. [PMID: 33234576 DOI: 10.1158/1541-7786.mcr-20-0526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
Abstract
c-MYC (MYC) is deregulated in more than 50% of all cancers. While MYC amplification is the most common MYC-deregulating event, many other alterations can increase MYC activity. We thus systematically investigated MYC pathway activity across different tumor types. Using a logistic regression framework, we established tumor type-specific, transcriptomic-based MYC activity scores that can accurately capture MYC activity. We show that MYC activity scores reflect a variety of MYC-regulating mechanisms, including MYCL and/or MYCN amplification, MYC promoter methylation, MYC mRNA expression, lncRNA PVT1 expression, MYC mutations, and viral integrations near the MYC locus. Our MYC activity score incorporates all of these mechanisms, resulting in better prognostic predictions compared with MYC amplification status, MYC promoter methylation, and MYC mRNA expression in several cancer types. In addition, we show that tumor proliferation and immune evasion are likely contributors to this reduction in survival. Finally, we developed a MYC activity signature for liquid tumors in which MYC translocation is commonly observed, suggesting that our approach can be applied to different types of genomic alterations. In conclusion, we developed a MYC activity score that captures MYC pathway activity and is clinically relevant. IMPLICATIONS: By using cancer type-specific MYC activity profiles, we were able to assess MYC activity across many more tumor types than previously investigated. The range of different MYC-related alterations captured by our MYC activity score can be used to facilitate the application of future MYC inhibitors and aid physicians to preselect patients for targeted therapy.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, New Hampshire
| | - Yanding Zhao
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Lanjing Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey.,Department of Pathology, Princeton Medical Center, Plainsboro, New Jersey
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, Texas
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire.,The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Han L, Zan Y, Huang C, Zhang S. NELFE promoted pancreatic cancer metastasis and the epithelial‑to‑mesenchymal transition by decreasing the stabilization of NDRG2 mRNA. Int J Oncol 2019; 55:1313-1323. [PMID: 31638184 PMCID: PMC6831195 DOI: 10.3892/ijo.2019.4890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Negative elongation factor E (NELFE) has been demonstrated to promote cancer progression as an RNA‑binding protein (RBP). However, the expression patterns, biological role and molecular mechanism of NELFE in pancreatic cancer (PC) remain largely unknown. The expression levels of NELFE in 120 pairs of PC tissues and adjacent non‑tumor clinical samples collected from patients with PC were examined via reverse transcription‑quantitative (RT‑q) PCR and immunohistochemistry. The mRNA expression levels of NELFE, N‑Myc downstream‑regulated gene 2 (NDRG2), c‑Myc, survivin and cyclin D1 were detected via RT‑qPCR. The protein expression levels of NELFE, NDRG2, total β‑catenin, nuclear β‑catenin, cytosolic β‑catenin, E‑cadherin, N‑cadherin and Vimentin were measured by western blotting. NELFE and NDRG2 were then knocked‑down by short hairpin (sh)RNA. PC cell proliferation was detected by MTT and colony formation assays. Invasion and migration were detected by transwell assays. The interaction between NELFE and NDRG2 was detected by luciferase reporter assays, mRNA decay assays and RNA immunoprecipitation. NELFE expression was increased in PC tissues compared with the paired non‑cancerous tissues. NELFE expression was upregulated in PC cells when compared with normal pancreatic cells (HPDE6‑C7). The present study revealed that knockdown of NELFE inhibited the proliferation, invasion and migration of PC cells. In addition, transfection of the sh‑NELFE vector inhibited the epithelial‑to‑mesenchymal transition in PC cells by suppressing the expression and nuclear accumulation of β‑catenin. Further mechanistic studies revealed that NELFE activates the Wnt/β‑catenin signaling pathway by decreasing the stabilization of NDRG2 mRNA in PC. To the best of our knowledge, these results revealed the promotional function of NELFE on PC tumorigenesis and metastasis for the first time, helping to provide a promising strategy for the treatment of patients with PC.
Collapse
Affiliation(s)
- Lili Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|