1
|
Yue L, Hu P, Zhu J. Advanced differential evolution for gender-aware English speech emotion recognition. Sci Rep 2024; 14:17696. [PMID: 39085418 PMCID: PMC11291894 DOI: 10.1038/s41598-024-68864-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
Speech emotion recognition (SER) technology involves feature extraction and prediction models. However, recognition efficiency tends to decrease because of gender differences and the large number of extracted features. Consequently, this paper introduces a SER system based on gender. First, gender and emotion features are extracted from speech signals to develop gender recognition and emotion classification models. Second, according to gender differences, distinct emotion recognition models are established for male and female speakers. The gender of speakers is determined before executing the corresponding emotion model. Third, the accuracy of these emotion models is enhanced by utilizing an advanced differential evolution algorithm (ADE) to select optimal features. ADE incorporates new difference vectors, mutation operators, and position learning, which effectively balance global and local searches. A new position repairing method is proposed to address gender differences. Finally, experiments on four English datasets demonstrate that ADE is superior to comparison algorithms in recognition accuracy, recall, precision, F1-score, the number of used features and execution time. The findings highlight the significance of gender in refining emotion models, while mel-frequency cepstral coefficients are important factors in gender differences.
Collapse
Affiliation(s)
- Liya Yue
- Fanli Business School, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Pei Hu
- School of Computer and Software, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Jiulong Zhu
- Fanli Business School, Nanyang Institute of Technology, Nanyang, 473004, China.
| |
Collapse
|
2
|
Shekhar S, Hirvi P, Maria A, Kotilahti K, Tuulari JJ, Karlsson L, Karlsson H, Nissilä I. Maternal prenatal depressive symptoms and child brain responses to affective touch at two years of age. J Affect Disord 2024; 356:177-189. [PMID: 38508459 DOI: 10.1016/j.jad.2024.03.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Touch is an essential form of mother-child interaction, instigating better social bonding and emotional stability. METHODS We used diffuse optical tomography to explore the relationship between total haemoglobin (HbT) responses to affective touch in the child's brain at two years of age and maternal self-reported prenatal depressive symptoms (EPDS). Affective touch was implemented via slow brushing of the child's right forearm at 3 cm/s and non-affective touch via fast brushing at 30 cm/s and HbT responses were recorded on the left hemisphere. RESULTS We discovered a cluster in the postcentral gyrus exhibiting a negative correlation (Pearson's r = -0.84, p = 0.015 corrected for multiple comparisons) between child HbT response to affective touch and EPDS at gestational week 34. Based on region of interest (ROI) analysis, we found negative correlations between child responses to affective touch and maternal prenatal EPDS at gestational week 14 in the precentral gyrus, Rolandic operculum and secondary somatosensory cortex. The responses to non-affective touch did not correlate with EPDS in these regions. LIMITATIONS The number of mother-child dyads was 16. However, by utilising high-density optode arrangements, individualised anatomical models, and video and accelerometry to monitor movement, we were able to minimize methodological sources of variability in the data. CONCLUSIONS The results show that maternal depressive symptoms during pregnancy may be associated with reduced child responses to affective touch in the temporoparietal cortex. Responses to affective touch may be considered as potential biomarkers for psychosocial development in children. Early identification of and intervention in maternal depression may be important already during early pregnancy.
Collapse
Affiliation(s)
- Shashank Shekhar
- Duke University School of Medicine, Department of Neurology, Durham, NC, USA; University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Ambika Maria
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
| | - Jetro J Tuulari
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; Turku Collegium for Science, Medicine and Technology, TCSMT, University of Turku, Finland
| | - Linnea Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland; University of Turku and Turku University Hospital, Department of Paediatrics and Adolescent Medicine, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Department of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland.
| |
Collapse
|
3
|
Agyeman K, McCarty T, Multani H, Mattingly K, Koziar K, Chu J, Liu C, Kokkoni E, Christopoulos V. Task-based functional neuroimaging in infants: a systematic review. Front Neurosci 2023; 17:1233990. [PMID: 37655006 PMCID: PMC10466897 DOI: 10.3389/fnins.2023.1233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
Background Infancy is characterized by rapid neurological transformations leading to consolidation of lifelong function capabilities. Studying the infant brain is crucial for understanding how these mechanisms develop during this sensitive period. We review the neuroimaging modalities used with infants in stimulus-induced activity paradigms specifically, for the unique opportunity the latter provide for assessment of brain function. Methods Conducted a systematic review of literature published between 1977-2021, via a comprehensive search of four major databases. Standardized appraisal tools and inclusion/exclusion criteria were set according to the PRISMA guidelines. Results Two-hundred and thirteen papers met the criteria of the review process. The results show clear evidence of overall cumulative growth in the number of infant functional neuroimaging studies, with electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) to be the most utilized and fastest growing modalities with behaving infants. However, there is a high level of exclusion rates associated with technical limitations, leading to limited motor control studies (about 6 % ) in this population. Conclusion Although the use of functional neuroimaging modalities with infants increases, there are impediments to effective adoption of existing technologies with this population. Developing new imaging modalities and experimental designs to monitor brain activity in awake and behaving infants is vital.
Collapse
Affiliation(s)
- Kofi Agyeman
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Tristan McCarty
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Harpreet Multani
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Kamryn Mattingly
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
| | - Katherine Koziar
- Orbach Science Library, University of California, Riverside, Riverside, CA, United States
| | - Jason Chu
- Division of Neurosurgery, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Charles Liu
- USC Neurorestoration Center, University of Southern California, Los Angeles, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| | - Elena Kokkoni
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Vassilios Christopoulos
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
- Neuroscience Graduate Program, University of California, Riverside, Riverside, CA, United States
- Department of Neurological Surgery, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Hirvi P, Kuutela T, Fang Q, Hannukainen A, Hyvönen N, Nissilä I. Effects of atlas-based anatomy on modelled light transport in the neonatal head. Phys Med Biol 2023; 68:135019. [PMID: 37167982 PMCID: PMC10460200 DOI: 10.1088/1361-6560/acd48c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Objective.Diffuse optical tomography (DOT) provides a relatively convenient method for imaging haemodynamic changes related to neuronal activity on the cerebral cortex. Due to practical challenges in obtaining anatomical images of neonates, an anatomical framework is often created from an age-appropriate atlas model, which is individualized to the subject based on measurements of the head geometry. This work studies the approximation error arising from using an atlas instead of the neonate's own anatomical model.Approach.We consider numerical simulations of frequency-domain (FD) DOT using two approaches, Monte Carlo simulations and diffusion approximation via finite element method, and observe the variation in (1) the logarithm of amplitude and phase shift measurements, and (2) the corresponding inner head sensitivities (Jacobians), due to varying segmented anatomy. Varying segmentations are sampled by registering 165 atlas models from a neonatal database to the head geometry of one individual selected as the reference model. Prior to the registration, we refine the segmentation of the cerebrospinal fluid (CSF) by separating the CSF into two physiologically plausible layers.Main results.In absolute measurements, a considerable change in the grey matter or extracerebral tissue absorption coefficient was found detectable over the anatomical variation. In difference measurements, a small local 10%-increase in brain absorption was clearly detectable in the simulated measurements over the approximation error in the Jacobians, despite the wide range of brain maturation among the registered models.Significance.Individual-level atlas models could potentially be selected within several weeks in gestational age in DOT difference imaging, if an exactly age-appropriate atlas is not available. The approximation error method could potentially be implemented to improve the accuracy of atlas-based imaging. The presented CSF segmentation algorithm could be useful also in other model-based imaging modalities. The computation of FD Jacobians is now available in the widely-used Monte Carlo eXtreme software.
Collapse
Affiliation(s)
- Pauliina Hirvi
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Topi Kuutela
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Qianqian Fang
- Northeastern University, Department of
Bioengineering, 360 Huntington Ave, Boston, MA 02115, United States of
America
| | - Antti Hannukainen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Nuutti Hyvönen
- Aalto University, Department of
Mathematics and Systems Analysis, PO Box 11100, FI-00076 AALTO,
Finland
| | - Ilkka Nissilä
- Aalto University, Department of
Neuroscience and Biomedical Engineering, PO Box 12200, FI-00076 AALTO,
Finland
| |
Collapse
|
5
|
Negative emotion recognition using multimodal physiological signals for advanced driver assistance systems. ARTIFICIAL LIFE AND ROBOTICS 2023. [DOI: 10.1007/s10015-023-00858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Hernandez-Martin E, Gonzalez-Mora JL. Diffuse optical tomography in the human brain: A briefly review from the neurophysiology to its applications. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The present work describes the use of noninvasive diffuse optical tomography (DOT) technology to measure hemodynamic changes, providing relevant information which helps to understand the basis of neurophysiology in the human brain. Advantages such as portability, direct measurements of hemoglobin state, temporal resolution, non‐restricted movements as occurs in magnetic resonance imaging (MRI) devices mean that DOT technology can be used in research and clinical fields. In this review we covered the neurophysiology, physical principles underlying optical imaging during tissue‐light interactions, and technology commonly used during the construction of a DOT device including the source‐detector requirements to improve the image quality. DOT provides 3D cerebral activation images due to complex mathematical models which describe the light propagation inside the tissue head. Moreover, we describe briefly the use of Bayesian methods for raw DOT data filtering as an alternative to linear filters widely used in signal processing, avoiding common problems such as the filter selection or a false interpretation of the results which is sometimes due to the interference of background physiological noise with neural activity.
Collapse
Affiliation(s)
- Estefania Hernandez-Martin
- Department of Basic Medical Science, Faculty of Health Science, Medicine Section, Universidad de La Laguna, 38071, Spain
| | - José Luis Gonzalez-Mora
- Department of Basic Medical Science, Faculty of Health Science, Medicine Section, Universidad de La Laguna, 38071, Spain
| |
Collapse
|
7
|
Zhao H, Frijia EM, Vidal Rosas E, Collins-Jones L, Smith G, Nixon-Hill R, Powell S, Everdell NL, Cooper RJ. Design and validation of a mechanically flexible and ultra-lightweight high-density diffuse optical tomography system for functional neuroimaging of newborns. NEUROPHOTONICS 2021; 8:015011. [PMID: 33778094 PMCID: PMC7995199 DOI: 10.1117/1.nph.8.1.015011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/09/2021] [Indexed: 05/27/2023]
Abstract
Significance: Neonates are a highly vulnerable population. The risk of brain injury is greater during the first days and weeks after birth than at any other time of life. Functional neuroimaging that can be performed longitudinally and at the cot-side has the potential to improve our understanding of the evolution of multiple forms of neurological injury over the perinatal period. However, existing technologies make it very difficult to perform repeated and/or long-duration functional neuroimaging experiments at the cot-side. Aim: We aimed to create a modular, high-density diffuse optical tomography (HD-DOT) technology specifically for neonatal applications that is ultra-lightweight, low profile and provides high mechanical flexibility. We then sought to validate this technology using an anatomically accurate dynamic phantom. Approach: An advanced 10-layer rigid-flexible printed circuit board technology was adopted as the basis for the DOT modules, which allows for a compact module design that also provides the flexibility needed to conform to the curved infant scalp. Two module layouts were implemented: dual-hexagon and triple-hexagon. Using in-built board-to-board connectors, the system can be configured to provide a vast range of possible layouts. Using epoxy resin, thermochromic dyes, and MRI-derived 3D-printed moulds, we constructed an electrically switchable, anatomically accurate dynamic phantom. This phantom was used to quantify the imaging performance of our flexible, modular HD-DOT system. Results: Using one particular module configuration designed to cover the infant sensorimotor system, the device provided 36 source and 48 detector positions, and over 700 viable DOT channels per wavelength, ranging from 10 to ∼ 45 mm over an area of approximately 60 cm 2 . The total weight of this system is only 70 g. The signal changes from the dynamic phantom, while slow, closely simulated real hemodynamic response functions. Using difference images obtained from the phantom, the measured 3D localization error provided by the system at the depth of the cortex was in the of range 3 to 6 mm, and the lateral image resolution at the depth of the neonatal cortex is estimated to be as good as 10 to 12 mm. Conclusions: The HD-DOT system described is ultra-low weight, low profile, can conform to the infant scalp, and provides excellent imaging performance. It is expected that this device will make functional neuroimaging of the neonatal brain at the cot-side significantly more practical and effective.
Collapse
Affiliation(s)
- Hubin Zhao
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- University of Glasgow, James Watt School of Engineering, Glasgow, United Kingdom
| | - Elisabetta M. Frijia
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Ernesto Vidal Rosas
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Liam Collins-Jones
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | | | - Reuben Nixon-Hill
- Gowerlabs Ltd., London, United Kingdom
- Imperial College London, Department of Mathematics, London, United Kingdom
| | - Samuel Powell
- Gowerlabs Ltd., London, United Kingdom
- Nottingham University, Department of Electrical and Electronic Engineering, Nottingham, United Kingdom
| | | | - Robert J. Cooper
- University College London, DOT-HUB, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| |
Collapse
|
8
|
Prosodic influence in face emotion perception: evidence from functional near-infrared spectroscopy. Sci Rep 2020; 10:14345. [PMID: 32873844 PMCID: PMC7462865 DOI: 10.1038/s41598-020-71266-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/30/2020] [Indexed: 11/08/2022] Open
Abstract
Emotion is communicated via the integration of concurrently presented information from multiple information channels, such as voice, face, gesture and touch. This study investigated the neural and perceptual correlates of emotion perception as influenced by facial and vocal information by measuring changes in oxygenated hemoglobin (HbO) using functional near-infrared spectroscopy (fNIRS) and acquiring psychometrics. HbO activity was recorded from 103 channels while participants ([Formula: see text], [Formula: see text]) were presented with vocalizations produced in either a happy, angry or neutral prosody. Voices were presented alone or paired with an emotional face and compared with a face-only condition. Behavioral results indicated that when voices were paired with faces, a bias in the direction of the emotion of the voice was present. Subjects' responses also showed greater variance and longer reaction times when responding to the bimodal conditions when compared to the face-only condition. While both the happy and angry prosody conditions exhibited right lateralized increases in HbO compared to the neutral condition, these activations were segregated into posterior-anterior subdivisions by emotion. Specific emotional prosodies may therefore differentially influence emotion perception, with happy voices exhibiting posterior activity in receptive emotion areas and angry voices displaying activity in anterior expressive emotion areas.
Collapse
|
9
|
Maria A, Nissilä I, Shekhar S, Kotilahti K, Tuulari JJ, Hirvi P, Huotilainen M, Heiskala J, Karlsson L, Karlsson H. Relationship between maternal pregnancy-related anxiety and infant brain responses to emotional speech - a pilot study. J Affect Disord 2020; 262:62-70. [PMID: 31710930 DOI: 10.1016/j.jad.2019.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 10/28/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Maternal pregnancy-related anxiety (PRA) is reportedly related to neurodevelopmental outcomes of infants. However, the relationship between maternal PRA and the processing of emotions in the infant brain has not been extensively studied with neuroimaging. The objective of the present pilot study is to investigate the relationship between maternal PRA and infant hemodynamic responses to emotional speech at two months of age. METHODS The study sample included 19 mother-infant dyads from a general sample of a population of Caucasian mothers. Self-reported Pregnancy-Related Anxiety Questionnaire (PRAQ-R2) data was collected from mothers during pregnancy at gestational weeks (gwks) 24 (N = 19) and 34 (N = 18). When their infants were two months old, the infants' brains functional responses to emotional speech in the left fronto-temporoparietal cortex were recorded using diffuse optical tomography (DOT). RESULTS Maternal PRAQ-R2 scores at gwk 24 correlated negatively with the total hemoglobin (HbT) responses to sad speech on both sides of the temporoparietal junction (Spearman's rank correlation coefficient ρ = -0.87). The correlation was significantly greater at gwk 24 than gwk 34 (ρ = -0.42). LIMITATIONS The field of view of the measurement did not include the right hemisphere or parts of the frontal cortex. The sample size is moderate and the mothers were relatively highly educated, thus there may be some differences between the study sample and the general population. CONCLUSIONS Maternal pregnancy-related anxiety may affect child brain emotion processing development. Further research is needed to understand the functional and developmental significance of the findings.
Collapse
Affiliation(s)
- Ambika Maria
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland
| | - Ilkka Nissilä
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland.
| | - Shashank Shekhar
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; University of Mississippi Medical Center, Department of Neurology, MS, USA
| | - Kalle Kotilahti
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland
| | - Jetro J Tuulari
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; The Turku Collegium for Science and Medicine (TCSM); University of Oxford, Department of Psychiatry, Oxford, United Kingdom; University of Turku and Turku University Hospital, Department of Psychiatry, Turku, Finland
| | - Pauliina Hirvi
- Aalto University, Department of Neuroscience and Biomedical Engineering, Finland; Aalto University, Department of Mathematics and Systems Analysis, Finland
| | - Minna Huotilainen
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; University of Helsinki, Faculty of Educational Sciences, CICERO Learning, Finland
| | - Juha Heiskala
- Helsinki University Central Hospital, Department of Clinical Neurophysiology, Finland
| | - Linnea Karlsson
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; University of Turku and Turku University Hospital, Department of Child Psychiatry, Turku, Finland
| | - Hasse Karlsson
- University of Turku, Institute of Clinical Medicine, Turku Brain and Mind Center, FinnBrain Birth Cohort Study, Turku, Finland; University of Turku and Turku University Hospital, Department of Psychiatry, Turku, Finland
| |
Collapse
|