1
|
Colonna Romano N, Marchetti M, Marangoni A, Leo L, Retrosi D, Rosato E, Fanti L. Neuronal Progenitors Suffer Genotoxic Stress in the Drosophila Clock Mutant per0. Cells 2024; 13:1944. [PMID: 39682693 DOI: 10.3390/cells13231944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/11/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
The physiological role and the molecular architecture of the circadian clock in fully developed organisms are well established. Yet, we have a limited understanding of the function of the clock during ontogenesis. We have used a null mutant (per0) of the clock gene period (per) in Drosophila melanogaster to ask whether PER may play a role during normal brain development. In third-instar larvae, we have observed that the absence of functional per results in increased genotoxic stress compared to wild-type controls. We have detected increased double-strand DNA breaks in the central nervous system and chromosome aberrations in dividing neuronal precursor cells. We have demonstrated that reactive oxygen species (ROS) are causal to the genotoxic effect and that expression of PER in glia is necessary and sufficient to suppress such a phenotype. Finally, we have shown that the absence of PER may result in less condensed chromatin, which contributes to DNA damage.
Collapse
Affiliation(s)
- Nunzia Colonna Romano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Marcella Marchetti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Marangoni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Leo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- RNA Editing Lab., Onco-Haematology Department, Genetics and Epigenetics of Paediatric Cancers, Bambino Gesù Children Hospital, IRCCS, 00179 Rome, Italy
| | - Diletta Retrosi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Ezio Rosato
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Neurogenetics Group, Department of Genetics, Genomics & Cancer Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Laura Fanti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur Italia, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Wahab MA, Del Gaudio N, Gargiulo B, Quagliariello V, Maurea N, Nebbioso A, Altucci L, Conte M. Exploring the Role of CBX3 as a Potential Therapeutic Target in Lung Cancer. Cancers (Basel) 2024; 16:3026. [PMID: 39272883 PMCID: PMC11394081 DOI: 10.3390/cancers16173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Epigenetic changes regulate gene expression through histone modifications, chromatin remodeling, and protein translation of these modifications. The PRC1 and PRC2 complexes shape gene repression via histone modifications. Specifically, the CBX protein family aids PRC1 recruitment to chromatin, impacting the progressive multistep process driving chromatin silencing. Among family members, CBX3 is a complex protein involved in aberrant epigenetic mechanisms that drive lung cancer progression. CBX3 promotes lung tumorigenesis by interacting with key pathways such as PI3K/AKT, Ras/KRAS, Wnt/β-catenin, MAPK, Notch, and p53, leading to increased proliferation, inhibition of apoptosis, and enhanced resistance to therapy. Given our current lack of knowledge, additional research is required to uncover the intricate mechanisms underlying CBX3 activity, as well as its involvement in molecular pathways and its potential biomarker evaluation. Specifically, the dissimilar roles of CBX3 could be reexamined to gain a greater insight into lung cancer pathogenesis. This review aims to provide a clear overview of the context-related molecular profile of CBX3, which could be useful for addressing clinical challenges and developing novel targeted therapies based on personalized medicine.
Collapse
Affiliation(s)
- Muhammad Aamir Wahab
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Biagio Gargiulo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, 80138 Naples, Italy
- Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131 Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, 83031 Ariano Irpino, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
3
|
Long Y, Hwang T, Gooding AR, Goodrich KJ, Hanson SD, Vallery TK, Rinn JL, Cech TR. Evaluation of the RNA-dependence of PRC2 binding to chromatin in human pluripotent stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553776. [PMID: 37645830 PMCID: PMC10462166 DOI: 10.1101/2023.08.17.553776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2), an important histone modifier and epigenetic repressor, has been known to interact with RNA for almost two decades. In our previous publication (Long, Hwang et al. 2020), we presented data supporting the functional importance of RNA interaction in maintaining PRC2 occupancy on chromatin, using comprehensive approaches including an RNA-binding mutant of PRC2 and an rChIP-seq assay. Recently, concerns have been expressed regarding whether the RNA-binding mutant has impaired histone methyltransferase activity and whether the rChIP-seq assay can potentially generate artifacts. Here we provide new data that support a number of our original findings. First, we found the RNA-binding mutant to be fully capable of maintaining H3K27me3 levels in human induced pluripotent stem cells. The mutant had reduced methyltransferase activity in vitro, but only on some substrates at early time points. Second, we found that our rChIP-seq method gave consistent data across antibodies and cell lines. Third, we further optimized rChIP-seq by using lower concentrations of RNase A and incorporating a catalytically inactive mutant RNase A as a control, as well as using an alternative RNase (RNase T1). The EZH2 rChIP-seq results using the optimized protocols supported our original finding that RNA interaction contributes to the chromatin occupancy of PRC2.
Collapse
Affiliation(s)
- Yicheng Long
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
- Present address: Cardiovascular Research Institute, Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Taeyoung Hwang
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Present address: Lieber Institute for Brain Development, Department of Neurology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne R Gooding
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Karen J Goodrich
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Skylar D Hanson
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Tenaya K Vallery
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Present address: Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
4
|
Wang J, Tan S, Zhang Y, Xu J, Li Y, Cheng Q, Ding C, Liu X, Chang J. Set7/9 aggravates ischemic brain injury via enhancing glutamine metabolism in a blocking Sirt5 manner. Cell Death Differ 2024; 31:511-523. [PMID: 38365969 PMCID: PMC11043079 DOI: 10.1038/s41418-024-01264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
The aberrant expression of methyltransferase Set7/9 plays a role in various diseases. However, the contribution of Set7/9 in ischemic stroke remains unclear. Here, we show ischemic injury results in a rapid elevation of Set7/9, which is accompanied by the downregulation of Sirt5, a deacetylase reported to protect against injury. Proteomic analysis identifies the decrease of chromobox homolog 1 (Cbx1) in knockdown Set7/9 neurons. Mechanistically, Set7/9 promotes the binding of Cbx1 to H3K9me2/3 and forms a transcription repressor complex at the Sirt5 promoter, ultimately repressing Sirt5 transcription. Thus, the deacetylation of Sirt5 substrate, glutaminase, which catalyzes the hydrolysis of glutamine to glutamate and ammonia, is decreased, promoting glutaminase expression and triggering excitotoxicity. Blocking Set7/9 eliminates H3K9me2/3 from the Sirt5 promoter and normalizes Sirt5 expression and Set7/9 knockout efficiently ameliorates brain ischemic injury by reducing the accumulation of ammonia and glutamate in a Sirt5-dependent manner. Collectively, the Set7/9-Sirt5 axis may be a promising epigenetic therapeutic target.
Collapse
Affiliation(s)
- Jinghuan Wang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Subei Tan
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China
| | - Yuyu Zhang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jie Xu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Yuhui Li
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Qianwen Cheng
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, 201203, China.
| | - Xinhua Liu
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Jun Chang
- Shanghai Key Labortary of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
5
|
Healy E, Zhang Q, Gail EH, Agius SC, Sun G, Bullen M, Pandey V, Das PP, Polo JM, Davidovich C. The apparent loss of PRC2 chromatin occupancy as an artifact of RNA depletion. Cell Rep 2024; 43:113858. [PMID: 38416645 DOI: 10.1016/j.celrep.2024.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
RNA has been implicated in the recruitment of chromatin modifiers, and previous studies have provided evidence in favor and against this idea. RNase treatment of chromatin is commonly used to study RNA-mediated regulation of chromatin modifiers, but the limitations of this approach remain unclear. RNase A treatment during chromatin immunoprecipitation (ChIP) reduces chromatin occupancy of the H3K27me3 methyltransferase Polycomb repressive complex 2 (PRC2). This led to suggestions of an "RNA bridge" between PRC2 and chromatin. Here, we show that RNase A treatment during ChIP causes the apparent loss of all facultative heterochromatin, including both PRC2 and H3K27me3 genome-wide. We track this observation to a gain of DNA from non-targeted chromatin, sequenced at the expense of DNA from facultative heterochromatin, which reduces ChIP signals. Our results emphasize substantial limitations in using RNase A treatment for mapping RNA-dependent chromatin occupancy and invalidate conclusions that were previously established for PRC2 based on this assay.
Collapse
Affiliation(s)
- Evan Healy
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Qi Zhang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia; EMBL-Australia at SAiGENCI, Adelaide, SA, Australia
| | - Emma H Gail
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Samuel C Agius
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Guizhi Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Bullen
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Varun Pandey
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Partha Pratim Das
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jose M Polo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Wellington Road, Clayton, VIC 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia; Adelaide Centre for Epigenetics and South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Chen Davidovich
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia; EMBL-Australia, Clayton, VIC, Australia.
| |
Collapse
|
6
|
Lee GE, Byun J, Lee CJ, Cho YY. Molecular Mechanisms for the Regulation of Nuclear Membrane Integrity. Int J Mol Sci 2023; 24:15497. [PMID: 37895175 PMCID: PMC10607757 DOI: 10.3390/ijms242015497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023] Open
Abstract
The nuclear membrane serves a critical role in protecting the contents of the nucleus and facilitating material and signal exchange between the nucleus and cytoplasm. While extensive research has been dedicated to topics such as nuclear membrane assembly and disassembly during cell division, as well as interactions between nuclear transmembrane proteins and both nucleoskeletal and cytoskeletal components, there has been comparatively less emphasis on exploring the regulation of nuclear morphology through nuclear membrane integrity. In particular, the role of type II integral proteins, which also function as transcription factors, within the nuclear membrane remains an area of research that is yet to be fully explored. The integrity of the nuclear membrane is pivotal not only during cell division but also in the regulation of gene expression and the communication between the nucleus and cytoplasm. Importantly, it plays a significant role in the development of various diseases. This review paper seeks to illuminate the biomolecules responsible for maintaining the integrity of the nuclear membrane. It will delve into the mechanisms that influence nuclear membrane integrity and provide insights into the role of type II membrane protein transcription factors in this context. Understanding these aspects is of utmost importance, as it can offer valuable insights into the intricate processes governing nuclear membrane integrity. Such insights have broad-reaching implications for cellular function and our understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Ga-Eun Lee
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Jiin Byun
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Chungcheongnam-do, Republic of Korea
| | - Yong-Yeon Cho
- BK21-4th, and BRL, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea; (G.-E.L.); (J.B.)
- RCD Control and Material Research Institute, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Xing Y, Larson K, Li J, Li WX. Canonical and non-canonical functions of STAT in germline stem cell maintenance. Dev Dyn 2023; 252:728-741. [PMID: 36866634 PMCID: PMC10238624 DOI: 10.1002/dvdy.576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Maintenance of the Drosophila male germline stem cells (GSCs) requires activation of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway by niche signals. The precise role of JAK/STAT signaling in GSC maintenance, however, remains incompletely understood. RESULTS Here, we show that, GSC maintenance requires both canonical and non-canonical JAK/STAT signaling, in which unphosphorylated STAT (uSTAT) maintains heterochromatin stability by binding to heterochromatin protein 1 (HP1). We found that GSC-specific overexpressing STAT, or even the transcriptionally inactive mutant STAT, increases GSC number and partially rescues the GSC-loss mutant phenotype due to reduced JAK activity. Furthermore, we found that both HP1 and STAT are transcriptional targets of the canonical JAK/STAT pathway in GSCs, and that GSCs exhibit higher heterochromatin content. CONCLUSIONS These results suggest that persistent JAK/STAT activation by niche signals leads to the accumulation of HP1 and uSTAT in GSCs, which promote heterochromatin formation important for maintaining GSC identity. Thus, the maintenance of Drosophila GSCs requires both canonical and non-canonical STAT functions within GSCs for heterochromatin regulation.
Collapse
Affiliation(s)
- Yalan Xing
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Kimberly Larson
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| | - Jinghong Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Willis X. Li
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
8
|
Wang J, Yang B, Zhang X, Liu S, Pan X, Ma C, Ma S, Yu D, Wu W. Chromobox proteins in cancer: Multifaceted functions and strategies for modulation (Review). Int J Oncol 2023; 62:36. [PMID: 36734270 PMCID: PMC9937689 DOI: 10.3892/ijo.2023.5484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Chromobox (CBX) proteins are important epigenetic regulatory proteins and are widely involved in biological processes, such as embryonic development, the maintenance of stem cell characteristics and the regulation of cell proliferation and apoptosis. Disorder and dysfunction of CBXs in cancer usually lead to the blockade or ectoptic activation of developmental pathways, promoting the occurrence, development and progression of cancer. In the present review, the characteristics and functions of CBXs were first introduced. Subsequently, the expression of CBXs in cancers and the relationship between CBXs and clinical characteristics (mainly cancer grade, stage, metastasis and relapse) and prognosis were discussed. Finally, it was described how CBXs regulate cell proliferation and self‑renewal, apoptosis and the acquisition of malignant phenotypes, such as invasion, migration and chemoresistance, through mechanisms involving epigenetic modification, nuclear translocation, noncoding RNA interactions, transcriptional regulation, posttranslational modifications, protein‑protein interactions, signal transduction and metabolic reprogramming. The study also focused on cancer therapies targeting CBXs. The present review provides new insight and a comprehensive basis for follow‑up research on CBXs and cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bo Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiuhang Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shuhan Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiaoqiang Pan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Changkai Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shiqiang Ma
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Dehai Yu
- Department of Public Research Platform, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Professor Dehai Yu, Public Research Platform, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| | - Wei Wu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Wei Wu, Department of Neurovascular Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
9
|
WiFi Related Radiofrequency Electromagnetic Fields Promote Transposable Element Dysregulation and Genomic Instability in Drosophila melanogaster. Cells 2022; 11:cells11244036. [PMID: 36552798 PMCID: PMC9776602 DOI: 10.3390/cells11244036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Exposure to artificial radio frequency electromagnetic fields (RF-EMFs) has greatly increased in recent years, thus promoting a growing scientific and social interest in deepening the biological impact of EMFs on living organisms. The current legislation governing the exposure to RF-EMFs is based exclusively on their thermal effects, without considering the possible non-thermal adverse health effects from long term exposure to EMFs. In this study we investigated the biological non-thermal effects of low-level indoor exposure to RF-EMFs produced by WiFi wireless technologies, using Drosophila melanogaster as the model system. Flies were exposed to 2.4 GHz radiofrequency in a Transverse Electromagnetic (TEM) cell device to ensure homogenous controlled fields. Signals were continuously monitored during the experiments and regulated at non thermal levels. The results of this study demonstrate that WiFi electromagnetic radiation causes extensive heterochromatin decondensation and thus a general loss of transposable elements epigenetic silencing in both germinal and neural tissues. Moreover, our findings provide evidence that WiFi related radiofrequency electromagnetic fields can induce reactive oxygen species (ROS) accumulation, genomic instability, and behavioural abnormalities. Finally, we demonstrate that WiFi radiation can synergize with RasV12 to drive tumor progression and invasion. All together, these data indicate that radiofrequency radiation emitted from WiFi devices could exert genotoxic effects in Drosophila and set the stage to further explore the biological effects of WiFi electromagnetic radiation on living organisms.
Collapse
|
10
|
The Heterochromatin protein 1 is a regulator in RNA splicing precision deficient in ulcerative colitis. Nat Commun 2022; 13:6834. [PMID: 36400769 PMCID: PMC9674647 DOI: 10.1038/s41467-022-34556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Defects in RNA splicing have been linked to human disorders, but remain poorly explored in inflammatory bowel disease (IBD). Here, we report that expression of the chromatin and alternative splicing regulator HP1γ is reduced in ulcerative colitis (UC). Accordingly, HP1γ gene inactivation in the mouse gut epithelium triggers IBD-like traits, including inflammation and dysbiosis. In parallel, we find that its loss of function broadly increases splicing noise, favoring the usage of cryptic splice sites at numerous genes with functions in gut biology. This results in the production of progerin, a toxic splice variant of prelamin A mRNA, responsible for the Hutchinson-Gilford Progeria Syndrome of premature aging. Splicing noise is also extensively detected in UC patients in association with inflammation, with progerin transcripts accumulating in the colon mucosa. We propose that monitoring HP1γ activity and RNA splicing precision can help in the management of IBD and, more generally, of accelerated aging.
Collapse
|
11
|
Casale AM, Liguori F, Ansaloni F, Cappucci U, Finaurini S, Spirito G, Persichetti F, Sanges R, Gustincich S, Piacentini L. Transposable element activation promotes neurodegeneration in a Drosophila model of Huntington's disease. iScience 2022; 25:103702. [PMID: 35036881 PMCID: PMC8752904 DOI: 10.1016/j.isci.2021.103702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder with progressive motor dysfunction and cognitive decline. The disease is caused by a CAG repeat expansion in the IT15 gene, which elongates a polyglutamine stretch of the HD protein, Huntingtin. No therapeutic treatments are available, and new pharmacological targets are needed. Retrotransposons are transposable elements (TEs) that represent 40% and 30% of the human and Drosophila genomes and replicate through an RNA intermediate. Mounting evidence suggests that mammalian TEs are active during neurogenesis and may be involved in diseases of the nervous system. Here we show that TE expression and mobilization are increased in a Drosophila melanogaster HD model. By inhibiting TE mobilization with Reverse Transcriptase inhibitors, polyQ-dependent eye neurodegeneration and genome instability in larval brains are rescued and fly lifespan is increased. These results suggest that TE activation may be involved in polyQ-induced neurotoxicity and a potential pharmacological target.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesco Liguori
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Federico Ansaloni
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Ugo Cappucci
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sara Finaurini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giovanni Spirito
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Remo Sanges
- Area of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Lucia Piacentini
- Department of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Wootton J, Soutoglou E. Chromatin and Nuclear Dynamics in the Maintenance of Replication Fork Integrity. Front Genet 2022; 12:773426. [PMID: 34970302 PMCID: PMC8712883 DOI: 10.3389/fgene.2021.773426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Replication of the eukaryotic genome is a highly regulated process and stringent control is required to maintain genome integrity. In this review, we will discuss the many aspects of the chromatin and nuclear environment that play key roles in the regulation of both unperturbed and stressed replication. Firstly, the higher order organisation of the genome into A and B compartments, topologically associated domains (TADs) and sub-nuclear compartments has major implications in the control of replication timing. In addition, the local chromatin environment defined by non-canonical histone variants, histone post-translational modifications (PTMs) and enrichment of factors such as heterochromatin protein 1 (HP1) plays multiple roles in normal S phase progression and during the repair of replicative damage. Lastly, we will cover how the spatial organisation of stalled replication forks facilitates the resolution of replication stress.
Collapse
Affiliation(s)
- Jack Wootton
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Evi Soutoglou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
13
|
Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline. Int J Mol Sci 2021; 22:ijms222413430. [PMID: 34948223 PMCID: PMC8707237 DOI: 10.3390/ijms222413430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.
Collapse
|
14
|
Rachez C, Legendre R, Costallat M, Varet H, Yi J, Kornobis E, Muchardt C. HP1γ binding pre-mRNA intronic repeats modulates RNA splicing decisions. EMBO Rep 2021; 22:e52320. [PMID: 34312949 DOI: 10.15252/embr.202052320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
HP1 proteins are best known as markers of heterochromatin and gene silencing. Yet, they are also RNA-binding proteins and the HP1γ/CBX3 family member is present on transcribed genes together with RNA polymerase II, where it regulates co-transcriptional processes such as alternative splicing. To gain insight in the role of the RNA-binding activity of HP1γ in transcriptionally active chromatin, we have captured and analysed RNAs associated with this protein. We find that HP1γ is specifically targeted to hexameric RNA motifs and coincidentally transposable elements of the SINE family. As these elements are abundant in introns, while essentially absent from exons, the HP1γ RNA association tethers unspliced pre-mRNA to chromatin via the intronic regions and limits the usage of intronic cryptic splice sites. Thus, our data unveil novel determinants in the relationship between chromatin and co-transcriptional splicing.
Collapse
Affiliation(s)
- Christophe Rachez
- Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France.,CNRS UMR 8256, Biological Adaptation and Aging, Paris, France.,Epigenetic Regulation Unit, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Rachel Legendre
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France.,Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Mickaël Costallat
- Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France.,CNRS UMR 8256, Biological Adaptation and Aging, Paris, France.,Epigenetic Regulation Unit, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Hugo Varet
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France.,Biomics Technological Platform, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Jia Yi
- Epigenetic Regulation Unit, Institut Pasteur, CNRS UMR 3738, Paris, France.,Sorbonne Université, Ecole Doctorale Complexité du Vivant (ED515), Paris, France
| | - Etienne Kornobis
- Epigenetic Regulation Unit, Institut Pasteur, CNRS UMR 3738, Paris, France
| | - Christian Muchardt
- Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France.,CNRS UMR 8256, Biological Adaptation and Aging, Paris, France.,Epigenetic Regulation Unit, Institut Pasteur, CNRS UMR 3738, Paris, France
| |
Collapse
|
15
|
Shapiro-Kulnane L, Bautista O, Salz HK. An RNA-interference screen in Drosophila to identify ZAD-containing C2H2 zinc finger genes that function in female germ cells. G3-GENES GENOMES GENETICS 2021; 11:6025177. [PMID: 33561227 PMCID: PMC8022714 DOI: 10.1093/g3journal/jkaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022]
Abstract
The zinc finger-associated domain (ZAD) is present in over 90 C2H2 zinc finger (ZNF) proteins. Despite their abundance, only a few ZAD-ZNF genes have been characterized to date. Here, we systematically analyze the function of 68 ZAD-ZNF genes in Drosophila female germ cells by performing an in vivo RNA-interference screen. We identified eight ZAD-ZNF genes required for oogenesis, and based on further characterization of the knockdown phenotypes, we uncovered defects broadly consistent with functions in germ cell specification and/or survival, early differentiation, and egg chamber maturation. These results provide a candidate pool for future studies aimed at functionalization of this large but poorly characterized gene family.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Oscar Bautista
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| |
Collapse
|
16
|
Casale AM, Cappucci U, Piacentini L. Unravelling HP1 functions: post-transcriptional regulation of stem cell fate. Chromosoma 2021; 130:103-111. [PMID: 34128099 PMCID: PMC8426308 DOI: 10.1007/s00412-021-00760-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.
Collapse
Affiliation(s)
- Assunta Maria Casale
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Ugo Cappucci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Lucia Piacentini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
17
|
Vidaurre V, Chen X. Epigenetic regulation of drosophila germline stem cell maintenance and differentiation. Dev Biol 2021; 473:105-118. [PMID: 33610541 DOI: 10.1016/j.ydbio.2021.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 12/13/2022]
Abstract
Gametogenesis is one of the most extreme cellular differentiation processes that takes place in Drosophila male and female germlines. This process begins at the germline stem cell, which undergoes asymmetric cell division (ACD) to produce a self-renewed daughter that preserves its stemness and a differentiating daughter cell that undergoes epigenetic and genomic changes to eventually produce haploid gametes. Research in molecular genetics and cellular biology are beginning to take advantage of the continually advancing genomic tools to understand: (1) how germ cells are able to maintain their identity throughout the adult reproductive lifetime, and (2) undergo differentiation in a balanced manner. In this review, we focus on the epigenetic mechanisms that address these two questions through their regulation of germline-soma communication to ensure germline stem cell identity and activity.
Collapse
Affiliation(s)
- Velinda Vidaurre
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Baltimore, MD, 21218, USA.
| |
Collapse
|
18
|
van Wijnen AJ, Bagheri L, Badreldin AA, Larson AN, Dudakovic A, Thaler R, Paradise CR, Wu Z. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 2021; 143:115659. [PMID: 32979540 DOI: 10.1016/j.bone.2020.115659] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulatory proteins support mammalian development, cancer, aging and tissue repair by controlling many cellular processes including stem cell self-renewal, lineage-commitment and senescence in both skeletal and non-skeletal tissues. We review here our knowledge of epigenetic regulatory protein complexes that support the formation of inaccessible heterochromatin and suppress expression of cell and tissue-type specific biomarkers during development. Maintenance and formation of heterochromatin critically depends on epigenetic regulators that recognize histone 3 lysine trimethylation at residues K9 and K27 (respectively, H3K9me3 and H3K27me3), which represent transcriptionally suppressive epigenetic marks. Three chromobox proteins (i.e., CBX1, CBX3 or CBX5) associated with the heterochromatin protein 1 (HP1) complex are methyl readers that interpret H3K9me3 marks which are mediated by H3K9 methyltransferases (i.e., SUV39H1 or SUV39H2). Other chromobox proteins (i.e., CBX2, CBX4, CBX6, CBX7 and CBX8) recognize H3K27me3, which is deposited by Polycomb Repressive Complex 2 (PRC2; a complex containing SUZ12, EED, RBAP46/48 and the methyl transferases EZH1 or EZH2). This second set of CBX proteins resides in PRC1, which has many subunits including other polycomb group factors (PCGF1, PCGF2, PCGF3, PCGF4, PCGF5, PCGF6), human polyhomeotic homologs (HPH1, HPH2, HPH3) and E3-ubiquitin ligases (RING1 or RING2). The latter enzymes catalyze the subsequent mono-ubiquitination of lysine 119 in H2A (H2AK119ub). We discuss biological, cellular and molecular functions of CBX proteins and their physiological and pathological activities in non-skeletal cells and tissues in anticipation of new discoveries on novel roles for CBX proteins in bone formation and skeletal development.
Collapse
Affiliation(s)
- Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Leila Bagheri
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amr A Badreldin
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - A Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America; Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Roman Thaler
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America.
| | - Christopher R Paradise
- Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, United States of America; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States of America
| | - Zhong Wu
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
19
|
Telomerase reverse transcriptase downregulation by RNA interference modulates endoplasmic reticulum stress and mitochondrial energy production. Mol Biol Rep 2020; 47:7735-7743. [PMID: 32959195 DOI: 10.1007/s11033-020-05848-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Telomerase is a cancer promoting ribonucleoprotein complex and is a potential therapeutic target for cancer. In this study, the effects of telomerase downregulation on the whole cell proteome were investigated. Understanding how the effect of downregulation on the whole proteome profile will generate a greater understanding of the possible roles played by telomerase in cancer. Downregulation was achieved by RNA interference (RNAi), targeting the telomerase reverse transcriptase (TERT) subunits of telomerase. Transfection of TERT siRNA downregulates TERT gene expression and induced downregulation of telomerase activity. Investigation of the effect of silencing TERT in telomerase was further validated through proteomic analysis by performing 2-dimension electrophoresis (2DE) coupled with MALDI-TOF/TOF. 12 protein spots in HeLa cells were reported to be significantly differentially expressed with 11 of them were upregulated and 1 downregulated. Through STRING analysis, differentially expressed proteins demonstrated strong associations with endoplasmic reticulum stress marker and mitochondrial energy production marker. In conclusions, the result exhibited novel integrated proteomic response involving endoplasmic reticulum stress and mitochondrial energy production in response to the TERT downregulation in cervical cancer cells.
Collapse
|
20
|
RNA is essential for PRC2 chromatin occupancy and function in human pluripotent stem cells. Nat Genet 2020; 52:931-938. [PMID: 32632336 DOI: 10.1038/s41588-020-0662-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Many chromatin-binding proteins and protein complexes that regulate transcription also bind RNA. One of these, Polycomb repressive complex 2 (PRC2), deposits the H3K27me3 mark of facultative heterochromatin and is required for stem cell differentiation. PRC2 binds RNAs broadly in vivo and in vitro. Yet, the biological importance of this RNA binding remains unsettled. Here, we tackle this question in human induced pluripotent stem cells by using multiple complementary approaches. Perturbation of RNA-PRC2 interaction by RNase A, by a chemical inhibitor of transcription or by an RNA-binding-defective mutant all disrupted PRC2 chromatin occupancy and localization genome wide. The physiological relevance of PRC2-RNA interactions is further underscored by a cardiomyocyte differentiation defect upon genetic disruption. We conclude that PRC2 requires RNA binding for chromatin localization in human pluripotent stem cells and in turn for defining cellular state.
Collapse
|
21
|
Ilyin AA, Stolyarenko AD, Klenov MS, Shevelyov YY. Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma 2020; 129:201-214. [PMID: 32500264 DOI: 10.1007/s00412-020-00738-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1a (HP1a) is a well-known component of pericentromeric and telomeric heterochromatin in Drosophila. However, its role and the mechanisms of its binding in the chromosome arms (ChAs) remain largely unclear. Here, we identified HP1a-interacting domains in the somatic cells of Drosophila ovaries using a DamID-seq approach and compared them with insertion sites of transposable elements (TEs) revealed by genome sequencing. Although HP1a domains cover only 13% of ChAs, they non-randomly associate with 42% of TE insertions. Furthermore, HP1a on average propagates at 2-kb distances from the TE insertions. These data confirm the role of TEs in formation of HP1a islands in ChAs. However, only 18% of HP1a domains have adjacent TEs, indicating the existence of other mechanisms of HP1a domain formation besides spreading from TEs. In particular, many TE-independent HP1a domains correspond to the regions attached to the nuclear pore complexes (NPCs) or contain active gene promoters. However, HP1a occupancy on the promoters does not significantly influence expression of corresponding genes. At the same time, the steady-state transcript level of many genes located outside of HP1a domains was altered upon HP1a knockdown in the somatic cells of ovaries, thus pointing to the strong indirect effect of HP1a depletion. Collectively, our results support an existence of at least three different mechanisms of HP1a domain emergence in ChAs: spreading from TE insertions, transient interactions with the chromatin located near NPCs, and targeting to the promoters of moderately expressed genes.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Anastasia D Stolyarenko
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
22
|
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev 2020; 12:387-400. [PMID: 32144738 PMCID: PMC7242596 DOI: 10.1007/s12551-020-00663-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|