1
|
Insulin-Degrading Enzyme Is a Non Proteasomal Target of Carfilzomib and Affects the 20S Proteasome Inhibition by the Drug. Biomolecules 2022; 12:biom12020315. [PMID: 35204815 PMCID: PMC8869475 DOI: 10.3390/biom12020315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
Carfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the β5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn2+ peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro. The drug behaves as a modulator of IDE activity, displaying an inhibitory effect over 10-fold lower than for the 20S. Notably, the interaction of IDE with the 20S enhances in vitro the inhibitory power of carfilzomib on proteasome, so that the IDE-20S complex is an even better target of carfilzomib than the 20S alone. Furthermore, IDE gene silencing after delivery of antisense oligonucleotides (siRNA) significantly reduced carfilzomib cytotoxicity in rMC1 cells, a validated model of Muller glia, suggesting that, in cells, the inhibitory activity of this drug on cell proliferation is somewhat linked to IDE and, possibly, also to its interaction with proteasome.
Collapse
|
2
|
Jayaweera SPE, Wanigasinghe Kanakanamge SP, Rajalingam D, Silva GN. Carfilzomib: A Promising Proteasome Inhibitor for the Treatment of Relapsed and Refractory Multiple Myeloma. Front Oncol 2021; 11:740796. [PMID: 34858819 PMCID: PMC8631731 DOI: 10.3389/fonc.2021.740796] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The proteasome is crucial for the degradation of intracellular proteins and plays an important role in mediating a number of cell survival and progression events by controlling the levels of key regulatory proteins such as cyclins and caspases in both normal and tumor cells. However, compared to normal cells, cancer cells are more dependent on the ubiquitin proteasome pathway (UPP) due to the accumulation of proteins in response to uncontrolled gene transcription, allowing proteasome to become a potent therapeutic target for human cancers such as multiple myeloma (MM). Up to date, three proteasome inhibitors namely bortezomib (2003), carfilzomib (2012) and ixazomib (2015) have been approved by the US Food and Drug Administration (FDA) for the treatment of patients with relapsed and/or refractory MM. This review mainly focuses on the biochemical properties, mechanism of action, toxicity profile and pivotal clinical trials related to carfilzomib, a second-generation proteasome inhibitor that binds irreversibly with proteasome to overcome the major toxicities and resistance associated with bortezomib.
Collapse
Affiliation(s)
| | | | - Dharshika Rajalingam
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Gayathri N Silva
- Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
3
|
Reboud-Ravaux M. [The proteasome - structural aspects and inhibitors: a second life for a validated drug target]. Biol Aujourdhui 2021; 215:1-23. [PMID: 34397372 DOI: 10.1051/jbio/2021005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Indexed: 02/06/2023]
Abstract
The proteasome is the central component of the adaptable ubiquitin proteasome system (UPS) discovered in the 1980's. It sustains protein homeostasis (proteostasis) under a large variety of physiological and pathological conditions. Its dysregulation has been often associated to various human diseases. Its potential regulation by modulators has emerged as promising avenue to develop treatments of various pathologies. The FDA approval in 2003 of the proteasome inhibitor bortezomib to treat multiple myeloma, then mantle lymphoma in 2006, has considerably increased the clinical interest of proteasome inhibition. Second-generation proteasome inhibitors (carfilzomib and ixazomib) have been approved to overcome bortezomib resistance and improved toxicity profile and route of administration. Selective inhibition of immunoproteasome is a promising approach towards the development of immunomodulatory drugs. The design of these drugs relies greatly on the elucidation of high-resolution structures of the targeted proteasomes. The ATPase-dependent 26S proteasome (2.4 MDa) consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of catalytic sites. In recent years, due to technical advances especially in atomic cryo-electron microscopy, significant progress has been made in the understanding of 26S proteasome structure and its dynamics. Stepwise conformational changes of the 19S particle induced by ATP hydrolysis lead to substrate translocation, 20S pore opening and processive protein degradation by the 20S proteolytic subunits (2β1, 2β2 and 2β5). A large variety of structurally different inhibitors, both natural products or synthetic compounds targeting immuno- and constitutive proteasomes, has been discovered. The latest advances in this drug discovery are presented. Knowledge about structures, inhibition mechanism and detailed biological regulations of proteasomes can guide strategies for the development of next-generation inhibitors to treat human diseases, especially cancers, immune disorders and pathogen infections. Proteasome activators are also potentially applicable to the reduction of proteotoxic stresses in neurodegeneration and aging.
Collapse
Affiliation(s)
- Michèle Reboud-Ravaux
- Sorbonne Université, Institut de Biologie Paris Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| |
Collapse
|
4
|
Bo Kim K. Proteasomal adaptations to FDA-approved proteasome inhibitors: a potential mechanism for drug resistance? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:634-645. [PMID: 34308274 PMCID: PMC8297691 DOI: 10.20517/cdr.2021.27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With proteasome inhibitors (PIs) becoming clinically available since 2003, outcomes for patients with multiple myeloma (MM) have dramatically changed, improving quality of life and survival. Despite the impressive treatment success, however, almost all MM patients who initially respond to these PIs eventually develop resistance. Furthermore, a portion of MM patients is inherently unresponsive to the PIs. Extensive mechanistic investigations identified several non-proteasomal signaling pathways suspected to be linked to the PI resistance, for which several excellent reviews are currently available. On the other hand, it is still unclear how cancer cells under high PI environments adapt to spare proteasome activity essential for survival and proliferation regardless of cancer evolution stages. This review outlines current progress towards understanding the proteasomal adaptations of cells in response to PI treatment to maintain necessary proteasome activity. A better understanding of cellular proteasomal changes in response to the PIs could provide a rationale to develop new therapeutics that could be used to overcome resistance to existing PI drugs.
Collapse
Affiliation(s)
- Kyung Bo Kim
- Department of Pharmaceutics, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| |
Collapse
|
5
|
Zagirova D, Autenried R, Nelson ME, Rezvani K. Proteasome Complexes and Their Heterogeneity in Colorectal, Breast and Pancreatic Cancers. J Cancer 2021; 12:2472-2487. [PMID: 33854609 PMCID: PMC8040722 DOI: 10.7150/jca.52414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Targeting the ubiquitin-proteasome system (UPS) - in particular, the proteasome complex - has emerged as an attractive novel cancer therapy. While several proteasome inhibitors have been successfully approved by the Food and Drug Administration for the treatment of hematological malignancies, the clinical efficacy of these inhibitors is unexpectedly lower in the treatment of solid tumors due to the functional and structural heterogeneity of proteasomes in solid tumors. There are ongoing trials to examine the effectiveness of compound and novel proteasome inhibitors that can target solid tumors either alone or in combination with conventional chemotherapeutic agents. The modest therapeutic efficacy of proteasome inhibitors such as bortezomib in solid malignancies demands further research to clarify the exact effects of these proteasome inhibitors on different proteasomes present in cancer cells. The structural, cellular localization and functional analysis of the proteasome complexes in solid tumors originated from different tissues provides new insights into the diversity of proteasomes' responses to inhibitors. In this study, we used an optimized iodixanol gradient ultracentrifugation to purify a native form of proteasome complexes with their intact associated protein partners enriched within distinct cellular compartments. It is therefore possible to isolate proteasome subcomplexes with far greater resolution than sucrose or glycerol fractionations. We have identified differences in the catalytic activities, subcellular distribution, and inhibitor sensitivity of cytoplasmic proteasomes isolated from human colon, breast, and pancreatic cancer cell lines. Our developed techniques and generated results will serve as a valuable guideline for investigators developing a new generation of proteasome inhibitors as an effective targeted therapy for solid tumors.
Collapse
Affiliation(s)
- Diana Zagirova
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Rebecca Autenried
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Morgan E Nelson
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA
| |
Collapse
|
6
|
Neuroendocrine Lung Cancer Mouse Models: An Overview. Cancers (Basel) 2020; 13:cancers13010014. [PMID: 33375066 PMCID: PMC7792789 DOI: 10.3390/cancers13010014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Neuroendocrine lung tumors are a heterogeneous group of malignancies that share a common neuroendocrine nature. They range from low- and intermediate-grade typical and atypical carcinoma, to the highly malignant large cell neuroendocrine lung carcinoma and small cell carcinoma, with marked differences in incidences and prognosis. This review delineates the current knowledge of the genetic landscape of the human tumors, its influence in the development of genetically engineered mouse models (GEMMs) and the molecular imaging tools available to detect and monitor these diseases. While small cell lung carcinoma is one of the diseases best represented by GEMMs, there is a worrying lack of animal models for the other members of the group, these being understudied diseases. Regardless of the incidence and material available, they all are in urgent need of effective therapies. Abstract Neuroendocrine lung tumors comprise a range of malignancies that extend from benign tumorlets to the most prevalent and aggressive Small Cell Lung Carcinoma (SCLC). They also include low-grade Typical Carcinoids (TC), intermediate-grade Atypical Carcinoids (AC) and high-grade Large Cell Neuroendocrine Carcinoma (LCNEC). Optimal treatment options have not been adequately established: surgical resection when possible is the choice for AC and TC, and for SCLC chemotherapy and very recently, immune checkpoint inhibitors. Some mouse models have been generated based on the molecular alterations identified in genomic analyses of human tumors. With the exception of SCLC, there is a limited availability of (preclinical) models making their development an unmet need for the understanding of the molecular mechanisms underlying these diseases. For SCLC, these models are crucial for translational research and novel drug testing, given the paucity of human material from surgery. The lack of early detection systems for lung cancer point them out as suitable frameworks for the identification of biomarkers at the initial stages of tumor development and for testing molecular imaging methods based on somatostatin receptors. Here, we review the relevant models reported to date, their impact on the understanding of the biology of the tumor subtypes and their relationships, as well as the effect of the analyses of the genetic landscape of the human tumors and molecular imaging tools in their development.
Collapse
|
7
|
Zerfas BL, Trader DJ. Synthesis and Application of an Activity-Based Peptide-Peptoid Hybrid Probe for the Immunoproteasome. ACTA ACUST UNITED AC 2020; 11:e76. [PMID: 31860787 DOI: 10.1002/cpch.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The immunoproteasome (iCP), a specific isoform of the proteasome's catalytic particle, is becoming an important protein complex of interest in various diseases. However, there is still much left to be learned about its activity in cells and how this can be altered by various endogenous conditions or with treatment with small molecules. Current strategies to investigate the iCP lack in their ability to be used in live, intact cells, limiting them to use in endpoint experiments. The iCP-selective probe presented here has been shown to be compatible with various live-cell assays, including monitoring iCP activity kinetically in a plate reader-based assay and observing single cells with confocal microscopy. A well-studied iCP-selective inhibitor, ONX-0914, has also been demonstrated to decrease the fluorescence signal of the iCP probe in both of these assays, showing its potential function in investigating small-molecule modulators of the iCP. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of an immunoproteasome-selective peptide-peptoid hybrid probe Basic Protocol 2: Expression of the immunoproteasome in A549 cells Basic Protocol 3: Using the immunoproteasome probe to monitor activity in live cells with a fluorescence plate reader Basic Protocol 4: Using the immunoproteasome probe to monitor activity in live cells with confocal microscopy.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
8
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
9
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
10
|
Lee MJ, Bhattarai D, Yoo J, Miller Z, Park JE, Lee S, Lee W, Driscoll JJ, Kim KB. Development of Novel Epoxyketone-Based Proteasome Inhibitors as a Strategy To Overcome Cancer Resistance to Carfilzomib and Bortezomib. J Med Chem 2019; 62:4444-4455. [PMID: 30964987 DOI: 10.1021/acs.jmedchem.8b01943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past 15 years, proteasome inhibitors (PIs), namely bortezomib, carfilzomib (Cfz) and ixazomib, have significantly improved the overall survival and quality-of-life for multiple myeloma (MM) patients. However, a significant portion of MM patients do not respond to PI therapies. Drug resistance is present either de novo or acquired after prolonged therapy through mechanisms that remain poorly defined. The lack of a clear understanding of clinical PI resistance has hampered the development of next-generation PI drugs to treat MM patients who no longer respond to currently available therapies. Here, we designed and synthesized novel epoxyketone-based PIs by structural modifications at the P1' site. We show that a Cfz analog, 9, harboring a hydroxyl substituent at its P1' position was highly cytotoxic against cancer cell lines displaying de novo or acquired resistance to Cfz. These results suggest that peptide epoxyketones incorporating P1'-targeting moieties may have the potential to bypass resistance mechanisms associated with Cfz and to provide additional clinical options for patients resistant to Cfz.
Collapse
Affiliation(s)
- Min Jae Lee
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Deepak Bhattarai
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Jisu Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Korea
| | - Zach Miller
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40536 , United States
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Korea
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology , Baylor College of Medicine , Houston , Texas 77030 , United States
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences , Seoul National University , Seoul 08826 , Korea
| | - James J Driscoll
- Department of Internal Medicine , Division of Hematology and Oncology and University of Cincinnati Cancer Institute , Cincinnati , Ohio 45267 , United States
| | - Kyung Bo Kim
- Department of Pharmaceutical Sciences , University of Kentucky , Lexington , Kentucky 40536 , United States
| |
Collapse
|