1
|
Wen T, Zhang X, Zhu J, Zhang S, Rhaman MS, Zeng W. A SLAF-based high-density genetic map construction and genetic architecture of thermotolerant traits in maize ( Zea mays L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1338086. [PMID: 38384753 PMCID: PMC10880447 DOI: 10.3389/fpls.2024.1338086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
The leaf scorching trait at flowering is a crucial thermosensitive phenotype in maize under high temperature stress (HS), yet the genetic basis of this trait remains poorly understood. In this study, we genotyped a 254 RIL-F2:8 population, derived from the leaf scorch-free parental inbred line Abe2 and the leaf scorching maternal inbred line B73, using the specific-locus amplified fragment sequencing (SLAF-seq) method. A total of 10,112 polymorphic SLAF markers were developed, and a high-density genetic map with a total length of 1,475.88 cM was constructed. The average sequencing depth of the parents was 55.23X, and that of the progeny was 12.53X. Then, we identified a total of 16 QTLs associated with thermotolerant traits at flowering, of which four QTLs of leaf scorching damage (LS) were distributed on chromosomes 1 (qLS1), 2 (qLS2.1, qLS2.2) and 3 (qLS3), which could explain 19.73% of phenotypic variation. Combining one qLS1 locus with QTL-seq results led to the identification of 6 candidate genes. Expression experiments and sequence variation indicated that Zm00001d033328, encoding N-acetyl-gamma-glutamyl-phosphate reductase, was the most likely candidate gene controlling thermotolerant traits at flowering. In summary, the high-density genetic map and genetic basis of thermotolerant traits lay a critical foundation for mapping other complex traits and identifying the genes associated with thermotolerant traits in maize.
Collapse
Affiliation(s)
- Tingting Wen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
- Seed Administration Station of Shandong Province, Jinan, China
| | - Xuefei Zhang
- Taian Daiyue District Bureau of Agriculture and Rural Affairs, Taian, China
| | - Jiaojiao Zhu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Susu Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| | - Wei Zeng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, China
| |
Collapse
|
2
|
Nair RM, Chaudhari S, Devi N, Shivanna A, Gowda A, Boddepalli VN, Pradhan H, Schafleitner R, Jegadeesan S, Somta P. Genetics, genomics, and breeding of black gram [ Vigna mungo (L.) Hepper]. FRONTIERS IN PLANT SCIENCE 2024; 14:1273363. [PMID: 38288416 PMCID: PMC10822891 DOI: 10.3389/fpls.2023.1273363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/18/2023] [Indexed: 01/31/2024]
Abstract
Black gram [Vigna mungo (L.) Hepper] is a highly nutritious grain legume crop, mainly grown in South and Southeast Asia, with the largest area in India, where the crop is challenged by several biotic and abiotic stresses leading to significant yield losses. Improving genetic gains to increase on-farm yields is the primary goal of black gram breeding programs. This could be achieved by developing varieties resistant to major diseases like mungbean yellow mosaic disease, urdbean leaf crinkle virus, Cercospora leaf spot, anthracnose, powdery mildew, and insect pests such as whitefly, cowpea aphids, thrips, stem flies, and bruchids. Along with increasing on-farm yields, incorporating market-preferred traits ensures the adoption of improved varieties. Black gram breeding programs rely upon a limited number of parental lines, leading to a narrow genetic base of the developed varieties. For accelerating genetic gain, there is an urgent need to include more diverse genetic material for improving traits for better adaptability and stress resistance in breeding populations. The present review summarizes the importance of black gram, the major biotic and abiotic stresses, available genetic and genomic resources, major traits for potential crop improvement, their inheritance, and the breeding approaches being used in black gram for the development of new varieties.
Collapse
|
3
|
Singh L, Dhillon GS, Kaur S, Dhaliwal SK, Kaur A, Malik P, Kumar A, Gill RK, Kaur S. Genome-wide Association Study for Yield and Yield-Related Traits in Diverse Blackgram Panel (Vigna mungo L. Hepper) Reveals Novel Putative Alleles for Future Breeding Programs. Front Genet 2022; 13:849016. [PMID: 35899191 PMCID: PMC9310006 DOI: 10.3389/fgene.2022.849016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Blackgram (Vigna mungo L. Hepper) is an important tropical and sub-tropical short-duration legume that is rich in dietary protein and micronutrients. Producing high-yielding blackgram varieties is hampered by insufficient genetic variability, absence of suitable ideotypes, low harvest index and susceptibility to biotic-abiotic stresses. Seed yield, a complex trait resulting from the expression and interaction of multiple genes, necessitates the evaluation of diverse germplasm for the identification of novel yield contributing traits. Henceforth, a panel of 100 blackgram genotypes was evaluated at two locations (Ludhiana and Gurdaspur) across two seasons (Spring 2019 and Spring 2020) for 14 different yield related traits. A wide range of variability, high broad-sense heritability and a high correlation of grain yield were observed for 12 out of 14 traits studied among all environments. Investigation of population structure in the panel using a set of 4,623 filtered SNPs led to identification of four sub-populations based on ad-hoc delta K and Cross entropy value. Using Farm CPU model and Mixed Linear Model algorithms, a total of 49 significant SNP associations representing 42 QTLs were identified. Allelic effects were found to be statistically significant at 37 out of 42 QTLs and 50 known candidate genes were identified in 24 of QTLs.
Collapse
Affiliation(s)
- Lovejit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | | | - Sarabjit Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Sandeep Kaur Dhaliwal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, India
| | - Ranjit Kaur Gill
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Satinder Kaur,
| |
Collapse
|
4
|
Jha UC, Nayyar H, Parida SK, Bakır M, von Wettberg EJB, Siddique KHM. Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era. Front Genet 2022; 13:831656. [PMID: 35464848 PMCID: PMC9021634 DOI: 10.3389/fgene.2022.831656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/24/2022] [Indexed: 12/22/2022] Open
Abstract
Legume crops, belonging to the Fabaceae family, are of immense importance for sustaining global food security. Many legumes are profitable crops for smallholder farmers due to their unique ability to fix atmospheric nitrogen and their intrinsic ability to thrive on marginal land with minimum inputs and low cultivation costs. Recent progress in genomics shows promise for future genetic gains in major grain legumes. Still it remains limited in minor legumes/underutilized legumes, including adzuki bean, cluster bean, horse gram, lathyrus, red clover, urd bean, and winged bean. In the last decade, unprecedented progress in completing genome assemblies of various legume crops and resequencing efforts of large germplasm collections has helped to identify the underlying gene(s) for various traits of breeding importance for enhancing genetic gain and contributing to developing climate-resilient cultivars. This review discusses the progress of genomic resource development, including genome-wide molecular markers, key breakthroughs in genome sequencing, genetic linkage maps, and trait mapping for facilitating yield improvement in underutilized legumes. We focus on 1) the progress in genomic-assisted breeding, 2) the role of whole-genome resequencing, pangenomes for underpinning the novel genomic variants underlying trait gene(s), 3) how adaptive traits of wild underutilized legumes could be harnessed to develop climate-resilient cultivars, 4) the progress and status of functional genomics resources, deciphering the underlying trait candidate genes with putative function in underutilized legumes 5) and prospects of novel breeding technologies, such as speed breeding, genomic selection, and genome editing. We conclude the review by discussing the scope for genomic resources developed in underutilized legumes to enhance their production and play a critical role in achieving the "zero hunger" sustainable development goal by 2030 set by the United Nations.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | | | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Melike Bakır
- Department of Agricultural Biotechnology, Faculty of Agriculture, Erciyes University, Kayseri, Turkey
| | - Eric J. B. von Wettberg
- Plant and Soil Science and Gund Institute for the Environment, The University of Vermont, Burlington, VT, United States
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | | |
Collapse
|
5
|
Wang J, Li J, Liu Z, Yuan X, Wang S, Chen H, Chen X, Cheng X, Wang L. Construction of a High-Density Genetic Map and Its Application for QTL Mapping of Leaflet Shapes in Mung Bean ( Vigna radiata L.). Front Genet 2020; 11:1032. [PMID: 33133136 PMCID: PMC7571465 DOI: 10.3389/fgene.2020.01032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Mung bean (Vigna radiata L.) is an important but understudied food legume in Asia and now worldwide. Genetic studies may help to accelerate the exploitation of new genes for breeding in this crop. Here, we used a recombination inbred line population to construct an SNP genetic linkage map by genome sequencing technology. We obtained 21,508 high-quality SNP markers integrated into 1,946 bin markers that were mapped onto 11 linkage groups (LGs) with 99-258 bin markers per LG. The total genetic length of the map was 1060.2 cM (38.76-168.03 cM per LG), with an average distance between markers of 0.54 cM. However, there were 18 gaps >5 cM, distribution on LG1, 3, 5, 7, and 9. Gene mapping for lobed and indented leaflets was conducted using the map. A major quantitative trait locus (QTL) associated with indented leaflets was detected on chromosome 10, with phenotypic variation explained (PVE) values of 39.7% and 45.4% under two different environments. Several QTLs for lobed leaflets were detected and most of them were tightly linked together on Chromosome 3. However, only one major QTL, which explained the largest phenotypic variation (27.7-69.5%), was stably detected under two different environments using both R and Q methods. In the two main stable QTLs regions on chromosomes 3 and 10, candidate genes for regulating the molecular mechanism of different leaflet shapes were detected by functional annotation. The overlap of major QTLs under different environments indicated that the present map would be good enough for precisely mapping genes, and both the QTL analysis and gene prediction were useful for investigating the mechanism of leaf development in mung bean or legumes.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianling Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science, Yangtze University, Jingzhou, China
| | - Zhenxing Liu
- Tangshan Academy of Agricultural Sciences, Tangshan, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Suhua Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglin Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xuzhen Cheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixia Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Somta P, Chen J, Yimram T, Yundaeng C, Yuan X, Tomooka N, Chen X. QTL Mapping for Agronomic and Adaptive Traits Confirmed Pleiotropic Effect of mog Gene in Black Gram [ Vigna mungo (L.) Hepper]. Front Genet 2020; 11:635. [PMID: 32695140 PMCID: PMC7338765 DOI: 10.3389/fgene.2020.00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Abstract
Organ size and architecture of plants are important traits affecting crop yield and agronomic practices. An induced mutant, multiple-organ gigantism (MOG), of black gram (Vigna mungo) has been obtained, which shows gigantic leaves, fruit, seed, and architecture (plant height) but lower number of pods per plant. These traits are a pleiotropic effect of a single recessive gene, mog. In this study, we investigated variation of 16 agronomic and adaptive traits in a recombinant inbred line (RIL) population derived from a cross between the MOG mutant (V. mungo var. mungo) and wild black gram (V. mungo var. silvestris) accession TC2210 and identified quantitative trait loci (QTLs) controlling those traits to gain a better understanding of the effect of the mog gene on breeding. The results showed that most of the traits (100-seed weight, leaf size, and plant height) showed moderate narrow-sense heritability (h 2) (45-65%), while pod size and seed length (SDL) showed high h 2 (>75%) and pod dehiscence (shattering), and seed width (SDW) and days to flowering showed low h 2 (<35%). The QTLs for the traits were mapped onto a high-density linkage map developed for the RIL population. Inclusive composite interval mapping identified 42 QTLs in total for the 16 traits with number of QTLs per trait ranging from one to six. Major QTLs for the MOG phenotypes were clustered on linkage group (LG) 6, confirming the pleiotropic effect of the mog gene. Effect of the mog gene/QTL for the MOG phenotypic variations was not high, ranging from about 15% in plant height to 40% in leaf size. For 100-seed weight, which is the most interesting trait, the mog gene/QTL contributed about 30% of the total trait variation and showed an additive effect of only 0.51 g, which is only about 1.5-fold higher than that of the other five QTLs detected for this trait. These results indicated that mog gene expression is highly affected by environment and the effect of the gene toward organ size and plant height is not extraordinarily high. Implications of the findings of this study and exploiting of the MOG mutant in breeding were also discussed.
Collapse
Affiliation(s)
- Prakit Somta
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom, Thailand
| | - Chutintorn Yundaeng
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Norihiko Tomooka
- Genetic Resources Center, Gene Bank, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
7
|
Messina FJ, Lish AM, Gompert Z. Components of Cowpea Resistance to the Seed Beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2418-2424. [PMID: 31081895 DOI: 10.1093/jee/toz117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Cowpea, Vigna unguiculata (L.) Walp., serves as a major source of dietary protein in many tropical and subtropical regions around the world. To identify loci associated with agronomically desirable traits, eight elite cowpea cultivars were systematically inter-crossed for eight generations to yield 305 recombinant inbred lines. Here, we investigated whether these founder parents also possess resistance to the seed beetle Callosobruchus maculatus (F.), a highly destructive post-harvest pest. We estimated larval survival in seeds, egg-to-adult development time, adult mass at emergence, and seed acceptance for oviposition. Survival varied significantly among cowpea cultivars, but the pattern was complicated by an unexpected source of mortality; on three cultivars, mature larvae in a substantial fraction of seeds (20-36%) exited seeds prematurely, and consequently failed to molt into viable adults. Even if such seeds were eliminated from the analysis, survival in the remaining seeds varied from 49 to 92% across the eight parents. Development time and body mass also differed among hosts, with particularly slow larval development on three closely related cultivars. Egg-laying females readily accepted all cultivars except one with a moderately rugose seed coat. Overall, suitability ranks of the eight cultivars depended on beetle trait; a cultivar that received the most eggs (IT82E-18) also conferred low survival. However, one cultivar (IT93K-503-1) was a relatively poor host for all traits. Given the magnitude of variation among parental cultivars, future assays of genotyped recombinant progeny can identify genomic regions and candidate genes associated with resistance to seed beetles.
Collapse
|