1
|
Knani L, Venditti M, Rouis H, Minucci S, Messaoudi I. Effects of dopaminergic neuron degeneration on osteocyte apoptosis and osteogenic markers in 6-OHDA male rat model of Parkinson's disease. Bone 2024; 190:117271. [PMID: 39369834 DOI: 10.1016/j.bone.2024.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Parkinson's disease (PD) and osteoporosis are prevalent chronic conditions that impact a significant proportion of the aging population. Observational and longitudinal studies consistently demonstrate that individuals with PD face an elevated risk of osteoporosis and reduced bone mineral density compared to control groups. However, there is currently no experimental evidence demonstrating the impact of dopaminergic neuron degeneration on bone metabolism. In the present study, we used a male rat model of PD induced by unilateral injection of 6-hydroxydopamine (6-OHDA) in the left medial forebrain bundle (MFB) to evaluate the effect of dopaminergic neuron lesion on certain parameters of bone metabolism. To confirm the dopaminergic neuron lesion, cylinder and Rotarod tests were applied to rats injected with 6-OHDA or vehicle. Osteocyte density and viability were determined through histology and TUNEL assay. Western Blot and immunohistochemistry analysis were performed to investigate whether dopaminergic degeneration influences the expression of some apoptotic markers (Caspase 3 and Cytochrome C) and some osteogenic markers (ALP, OCN, and RUNX2). Our findings show that the dopaminergic lesion resulting from the injection of 6-OHDA was successfully confirmed through behavioral tests. Furthermore, the degeneration of dopaminergic neurons induced by 6-OHDA leads to apoptosis of osteocytes associated with a significant reduction in the tissue expression of the studied osteogenic markers. Thus, our study provides evidence that 6-OHDA-induced degeneration of dopaminergic neurons leads to osteocyte apoptosis, which may contribute to the development of some signs of osteoporosis.
Collapse
Affiliation(s)
- Latifa Knani
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia.
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Hajer Rouis
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Università della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Imed Messaoudi
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir, Tunisia
| |
Collapse
|
2
|
Roshni J, Mahema S, Ahmad SF, Al-Mazroua HA, Manjunath Kamath S, Ahmed SSSJ. Integrating Blood Biomarkers and Marine Brown Algae-Derived Inhibitors in Parkinson's Disease: A Multi-scale Approach from Interactomics to Quantum Mechanics. Mol Biotechnol 2024:10.1007/s12033-024-01262-y. [PMID: 39225961 DOI: 10.1007/s12033-024-01262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) involves alpha-synuclein accumulation according to Braak's pattern, with diverse clinical progressions that complicate diagnosis and treatment. We aimed to correlate Braak's pattern with rapid progressive PD to identify blood-based biomarkers and therapeutic targets exploiting brown algae-derived bioactives for potential treatment. We implemented a systematic workflow of transcriptomic profiling, co-expression networks, cluster profiling, transcriptional regulator identification, molecular docking, quantum calculations, and dynamic simulations. The transcriptomic analyses exhibited highly expressed genes at each Braak's stage and in rapidly progressive PD. Co-expression networks for Braak's stages were built, and the top five clusters from each stage displayed significant overlap with differentially expressed genes in rapidly progressive PD, indicating shared biomarkers between the blood and the PD brain. Further investigation showed, NF-kappa-B p105 as the master transcriptional regulator of these biomarkers. Molecular docking screened phlorethopentafuhalol-A from brown algae, exhibiting a superior inhibitory effect with p105 (- 7.51 kcal/mol) by outperforming PD drugs and anti-inflammatory compounds (- 5.73 to - 4.38 kcal/mol). Quantum mechanics and molecular mechanics (QM/MM) calculations and dynamic simulations have confirmed the interactive stability of phlorethopentafuhalol-A with p105. Overall, our combined computational study shows that phlorethopentafuhalol-A derived from brown algae, may have healing properties that could help treat PD.
Collapse
Affiliation(s)
- Jency Roshni
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, 603103, India
| | - S Mahema
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, 603103, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - S Manjunath Kamath
- Centre for Nanoscience and Nanotechnology, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Shiek S S J Ahmed
- Drug Discovery and Multi-omics Laboratory, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
3
|
Alcalá-Zúniga D, Espinoza-Torres E, Das RK, Vargas M, Maldonado O, Benavides O, Manojkumar A, de la Garza R, Davila N, Perez I, Martinez AH, Roy D, López-Juárez A, Zarei MM, Baker KA, Gil M, Rodrigo H, de Erausquin GA, Roy U. Enriched Environment Contributes to the Recovery from Neurotoxin-Induced Parkinson's Disease Pathology. Mol Neurobiol 2024; 61:6734-6753. [PMID: 38349515 PMCID: PMC11339186 DOI: 10.1007/s12035-024-03951-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/02/2024] [Indexed: 08/22/2024]
Abstract
Parkinson's disease (PD) is a neurological disorder that affects dopaminergic neurons. The lack of understanding of the underlying molecular mechanisms of PD pathology makes treating it a challenge. Several pieces of evidence support the protective role of enriched environment (EE) and exercise on dopaminergic neurons. The specific aspect(s) of neuroprotection after exposure to EE have not been identified. Therefore, we have investigated the protective role of EE on dopamine dysregulation and subsequent downregulation of DJ1 protein using in vitro and in vivo models of PD. Our study for the first time demonstrated that DJ1 expression has a direct correlation with dopamine downregulation in PD models and exposure to EE has a significant impact on improving the behavioral changes in PD mice. This research provides evidence that exercise in EE has a positive effect on PD without interfering with the current line of therapy.
Collapse
Affiliation(s)
- Daphne Alcalá-Zúniga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Erika Espinoza-Torres
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Ranjit Kumar Das
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Magaly Vargas
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Oscar Maldonado
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Omar Benavides
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Arvind Manojkumar
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Roberto de la Garza
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Natalia Davila
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Isaac Perez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro Hernandez Martinez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Deepa Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Alejandro López-Juárez
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Masoud M Zarei
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Kelsey A Baker
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Mario Gil
- Department of Psychological Science, University of Texas Rio Grande Valley, Brownsville, TX, USA
- Institute of Neuroscience, University of Texas Rio Grande Valley School of Medicine, Harlingen, TX, USA
| | - Hansapani Rodrigo
- School of Mathematical and Statistical Sciences, University of Rio Grande Valley, Edinburg, TX, USA
| | - Gabriel A de Erausquin
- The Glenn Biggs Institute of Alzheimer's and Neurodegenerative Disorders, Joe and Teresa Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
4
|
Rocha SM, Kirkley KS, Chatterjee D, Aboellail TA, Smeyne RJ, Tjalkens RB. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the inhibition of p62/sequestosome-1-dependent autophagy in the rotenone model of Parkinson's disease. Glia 2023; 71:2154-2179. [PMID: 37199240 PMCID: PMC10330367 DOI: 10.1002/glia.24385] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder worldwide, with a greater prevalence in men than women. The etiology of PD is largely unknown, although environmental exposures and neuroinflammation are linked to protein misfolding and disease progression. Activated microglia are known to promote neuroinflammation in PD, but how environmental agents interact with specific innate immune signaling pathways in microglia to stimulate conversion to a neurotoxic phenotype is not well understood. To determine how nuclear factor kappa B (NF-κB) signaling dynamics in microglia modulate neuroinflammation and dopaminergic neurodegeneration, we generated mice deficient in NF-κB activation in microglia (CX3CR1-Cre::IKK2fl/fl ) and exposed them to 2.5 mg/kg/day of rotenone for 14 days, followed by a 14-day post-lesioning incubation period. We postulated that inhibition of NF-κB signaling in microglia would reduce overall inflammatory injury in lesioned mice. Subsequent analysis indicated decreased expression of the NF-κB-regulated autophagy gene, sequestosome 1 (p62), in microglia, which is required for targeting ubiquitinated α-synuclein (α-syn) for lysosomal degradation. Knock-out animals had increased accumulation of misfolded α-syn within microglia, despite an overall reduction in neurodegeneration. Interestingly, this occurred more prominently in males. These data suggest that microglia play key biological roles in the degradation and clearance of misfolded α-syn and this process works in concert with the innate immune response associated with neuroinflammation. Importantly, the accumulation of misfolded α-syn protein aggregates alone did not increase neurodegeneration following exposure to rotenone but required the NF-κB-dependent inflammatory response in microglia.
Collapse
Affiliation(s)
- Savannah M. Rocha
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Kelly S. Kirkley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| | - Debotri Chatterjee
- Jefferson Comprehensive Parkinson’s Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Tawfik A. Aboellail
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523
| | - Richard J. Smeyne
- Jefferson Comprehensive Parkinson’s Center, Vickie & Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
5
|
Rani L, Ghosh B, Ahmad MH, Mondal AC. Evaluation of Potential Neuroprotective Effects of Vanillin Against MPP +/MPTP-Induced Dysregulation of Dopaminergic Regulatory Mechanisms in SH-SY5Y Cells and a Mouse Model of Parkinson's Disease. Mol Neurobiol 2023:10.1007/s12035-023-03358-z. [PMID: 37145378 DOI: 10.1007/s12035-023-03358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition. The pathogenesis of PD is still unknown, and drugs available for PD treatment either have side effects or have suboptimal efficacy. Flavonoids are potent antioxidants having little toxicity with extended use, suggesting they might hold promising therapeutic potential against PD. Vanillin (Van) is a phenolic compound that has exhibited neuroprotective properties in various neurological disorders, including PD. However, the neuroprotective role of Van in PD and its underlying mechanisms are scarce and therefore need more exploration. Here, we evaluated the neuroprotective potential of Van and its associated mechanisms against MPP+/MPTP-induced neuronal loss in differentiated human neuroblastoma (SH-SY5Y) cells and the mouse model of PD. In the present study, Van treatment significantly enhanced the cell viability and alleviated oxidative stress, mitochondrial membrane potential, and apoptosis in MPP+-intoxicated SH-SY5Y cells. Moreover, Van significantly ameliorated the MPP+-induced dysregulations in protein expression of tyrosine hydroxylase (TH) and mRNA expressions of GSK-3β, PARP1, p53, Bcl-2, Bax, and Caspase-3 genes in SH-SY5Y cells. Similar to our in vitro results, Van significantly alleviated MPTP-induced neurobehavioral dysregulations, oxidative stress, aberrant TH protein expressions, and immunoreactivity in SNpc of mice brains. Treatment of Van also prevented MPTP-mediated loss of TH-positive intrinsic dopaminergic neurons to SNpc and TH-fibers projecting to the striatum of mice. Thus, Van exhibited promising neuroprotective properties in the current study against MPP+/MPTP-intoxicated SH-SY5Y cells and mice, indicating its potential therapeutic properties against PD pathology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Balaram Ghosh
- Midnapore Medical College and Hospital, West Medinipur, Kolkata, West Bengal, India
| | - Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India, 110067.
| |
Collapse
|
6
|
Xu Y, Zhong L, Wei H, Li Y, Xie J, Xie L, Chen X, Guo X, Yin P, Li S, Zeng J, Li XJ, Lin L. Brain Region- and Age-Dependent 5-Hydroxymethylcytosine Activity in the Non-Human Primate. Front Aging Neurosci 2022; 14:934224. [PMID: 35912074 PMCID: PMC9326314 DOI: 10.3389/fnagi.2022.934224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (juvenile), 8 (young adult), and 17 (old) years. We found that genomic 5hmC distribution was accumulated in the monkey brain as age increased and displayed unique patterns in the cerebellum and striatum in an age-dependent manner. We also observed a correlation between differentially hydroxymethylated regions (DhMRs) and genes that contribute to brain region-related functions and diseases. Our studies revealed, for the first time, the brain-region and age-dependent 5hmC modifications in the non-human primate and the association of these 5hmC modifications with brain region-specific function and potentially aging-related brain diseases.
Collapse
Affiliation(s)
- Yanru Xu
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liying Zhong
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Huixian Wei
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuwei Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiaxiang Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Leijie Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junwei Zeng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Li Lin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- *Correspondence: Li Lin
| |
Collapse
|
7
|
Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022; 17:2. [PMID: 35000606 PMCID: PMC8744293 DOI: 10.1186/s13024-021-00504-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
The use of animals as models of human physiology is, and has been for many years, an indispensable tool for understanding the mechanisms of human disease. In Parkinson's disease, various mouse models form the cornerstone of these investigations. Early models were developed to reflect the traditional histological features and motor symptoms of Parkinson's disease. However, it is important that models accurately encompass important facets of the disease to allow for comprehensive mechanistic understanding and translational significance. Circadian rhythm and sleep issues are tightly correlated to Parkinson's disease, and often arise prior to the presentation of typical motor deficits. It is essential that models used to understand Parkinson's disease reflect these dysfunctions in circadian rhythms and sleep, both to facilitate investigations into mechanistic interplay between sleep and disease, and to assist in the development of circadian rhythm-facing therapeutic treatments. This review describes the extent to which various genetically- and neurotoxically-induced murine models of Parkinson's reflect the sleep and circadian abnormalities of Parkinson's disease observed in the clinic.
Collapse
Affiliation(s)
- Jeremy Hunt
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Elizabeth J. Coulson
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, Australia
| |
Collapse
|
8
|
Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021; 45:6369544. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal Ganglia (BG) are a set of subcortical nuclei that are involved in the control of a wide variety of motor, cognitive and affective behaviors. Although many behavioral abnormalities associated with BG dysfunction overlap with the clinical picture precipitated by the lack of sleep, the impact of sleep alterations on neuronal activity in BG is unknown. Using wildtype C57BI mice, we investigated the circadian and sleep-related homeostatic modulation of neuronal activity in the 3 functional subdivisions of the striatum (i.e. sensorimotor, associative and limbic striatum). We found no circadian modulation of activity in both ventral and dorso-medial striatum while the dorso-lateral striatum displayed a significant circadian rhythm with increased firing rates during the subjective dark, active phase. By combining neuronal activity recordings with electroencephalogram (EEG) recordings, we found a strong modulation of neuronal activity by the nature of vigilance states with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in all striatal subregions. Depriving animals of sleep for 6 hours induced significant, but heterogenous alterations in the neuronal activity across striatal subregions. Notably, these alterations lasted for up to 48 hours in the sensorimotor striatum and persisted even after the normalization of cortical EEG power densities. Our results show that vigilance and sleep states as well as their disturbances significantly affect neuronal activity within the striatum. We propose that these changes in neuronal activity underlie both the well-established links between sleep alterations and several disorders involving BG dysfunction as well as the maladaptive changes in behavior induced in healthy subjects following sleep loss.
Collapse
Affiliation(s)
- Karim Fifel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
Pérez-Santamarina E, García-Ruiz P, Martínez-Rubio D, Ezquerra M, Pla-Navarro I, Puente J, Martí MJ, Palau F, Hoenicka J. Regulatory rare variants of the dopaminergic gene ANKK1 as potential risk factors for Parkinson's disease. Sci Rep 2021; 11:9879. [PMID: 33972609 PMCID: PMC8110570 DOI: 10.1038/s41598-021-89300-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by cerebral dopamine depletion that causes motor and cognitive deficits. The dopamine-related gene ANKK1 has been associated with neuropsychiatric disorders with a dopaminergic deficiency in the striatum. This study aims to define the contribution of ANKK1 rare variants in PD. We found in 10 out of 535 PD patients 6 ANKK1 heterozygous rare alleles located at the 5′UTR, the first exon, intron 1, and the nearby enhancer located 2.6 kb upstream. All 6 ANKK1 single nucleotide variants were located in conserved regulatory regions and showed significant allele-dependent effects on gene regulation in vitro. ANKK1 variant carriers did not show other PD-causing Mendelian mutations. Nevertheless, four patients were heterozygous carriers of rare variants of ATP7B gene, which is related to catecholamines. We also found an association between the polymorphic rs7107223 of the ANKK1 enhancer and PD in two independent clinical series (P = 0.007 and 0.021). rs7107223 functional analysis showed significant allele-dependent effects on both gene regulation and dopaminergic response. In conclusion, we have identified in PD patients functional variants at the ANKK1 locus highlighting the possible relevance of rare variants and non-coding regulatory regions in both the genetics of PD and the dopaminergic vulnerability of this disease.
Collapse
Affiliation(s)
- Estela Pérez-Santamarina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,University of East Anglia, Norwich, UK
| | - Pedro García-Ruiz
- Unit of Movement Disorders, Department of Neurology, Fundación Jimenez Díaz, Madrid, Spain
| | - Dolores Martínez-Rubio
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Unit of Rare Neurodegenerative Diseases, CIPF, Valencia, Spain.,Rare Diseases Joint Units, CIPF-IIS La Fe and INCLIVA, Valencia, Spain
| | - Mario Ezquerra
- Laboratory of Neurodegenerative Disorders, Department of Neurology, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | | | | | - María José Martí
- Movement Disorders Unit, Department of Neurology, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Francesc Palau
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain.,Laboratory of Neurogenetics and Molecular Medicine, Neurogenetics and Molecular Medicine Research Group, Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, Esplugues de Llobrega, 08950, tBarcelona, Spain.,Department of Genetic Medicine, Hospital Sant Joan de Déu, Barcelona, Spain.,ICMID, Hospital Clínic, and Division of Pediatrics, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Janet Hoenicka
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain. .,Laboratory of Neurogenetics and Molecular Medicine, Neurogenetics and Molecular Medicine Research Group, Institut de Recerca Sant Joan de Déu, C/ Santa Rosa 39-57, Esplugues de Llobrega, 08950, tBarcelona, Spain.
| |
Collapse
|
10
|
Developmental Changes in Dendritic Spine Morphology in the Striatum and Their Alteration in an A53T α-Synuclein Transgenic Mouse Model of Parkinson's Disease. eNeuro 2020; 7:ENEURO.0072-20.2020. [PMID: 32817196 PMCID: PMC7470930 DOI: 10.1523/eneuro.0072-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/12/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
The aging process is accompanied by various neurophysiological changes, and the severity of neurodegenerative disorders such as Parkinson’s disease (PD) increases with aging. However, the precise neuroanatomical changes that accompany the aging process in both normal and pathologic conditions remain unknown. This is in part because there is a lack of high-resolution imaging tool that has the capacity to image a desired volume of neurons in a high-throughput and automated manner. In the present study, focused ion beam/scanning electron microscopy (FIB/SEM) was used to image striatal neuropil in both wild-type (WT) mice and an A53T bacterial artificial chromosome (BAC) human α-synuclein (A53T-BAC-SNCA) transgenic (Tg) mouse model of PD, at 1, 3, 6, and 22 months of age. We demonstrated that spine density gradually decreases, and average spine head volume gradually increases with age in WT mice, suggesting a homeostatic balance between spine head volume and spine density. However, this inverse relationship between spine head volume and spine density was not observed in A53T-BAC-SNCA Tg mice. Taken together, our data suggest that PD is accompanied by an abnormality in the mechanisms that control synapse growth and maturity.
Collapse
|
11
|
Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism 2020; 11:19. [PMID: 32164788 PMCID: PMC7069029 DOI: 10.1186/s13229-020-00324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. Methods Mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. Results Dlg2–/– mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2–/– mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2–/– dorsolateral striatum was significantly reduced. Conclusion These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.
Collapse
Affiliation(s)
- Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea.
| |
Collapse
|
12
|
Chlorpyrifos Exposure Induces Parkinsonian Symptoms and Associated Bone Loss in Adult Swiss Albino Mice. Neurotox Res 2019; 36:700-711. [PMID: 31367921 DOI: 10.1007/s12640-019-00092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022]
Abstract
Prenatal and early life exposure of chlorpyrifos (CPF), a widely used pesticide, is known to cause neuronal deficits and Parkinson's disease (PD). However, data about the effect of its exposure at adult stages on PD-like symptoms and associated bone loss is scanty. In the present study, we investigated the impact of CPF on the behavioral alterations seen in PD using adult Swiss albino mice. PD is often associated with bone loss. Hence, skeletal changes were also evaluated using micro-computed tomography and histology. MPTP was used as a positive control. Cell culture studies using MC3T3E-1, SHSY5Y, and primary osteoclast cultures were done to understand the cellular mechanism for the behavioral and skeletal changes. Our results showed that CPF treatment leads to PD-like symptoms due to the loss of dopaminergic neurons. Moreover, CPF has a deleterious effect on the trabecular bone through both indirect changes in circulating factors and direct stimulation of multinucleate osteoclast cell formation. The impact on the bone mass was even stronger than MPTP. In conclusion, this is the first report demonstrating that CPF induces parkinsonian features in adult Swiss albino mice and it is accompanied by loss of trabecular bone.
Collapse
|