1
|
D'Adamio L. Reply to Johansson 'Treatment with BRICHOS domain helps to clarify issues with Alzheimer mouse models'. EMBO Mol Med 2024; 16:717-719. [PMID: 38480931 PMCID: PMC11018735 DOI: 10.1038/s44321-024-00042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
This correspondence is a reply to correspondence from Dr. Jan Johansson on the utility of BRICHOS domains in understanding pathology in Alzheimer’s disease mouse models.
Collapse
Affiliation(s)
- Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
2
|
Yin T, Yesiltepe M, D'Adamio L. Functional BRI2-TREM2 interactions in microglia: implications for Alzheimer's and related dementias. EMBO Rep 2024; 25:1326-1360. [PMID: 38347225 PMCID: PMC10933458 DOI: 10.1038/s44319-024-00077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 03/14/2024] Open
Abstract
ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction. α-secretase cleaves TREM2 into TREM2-CTF and sTREM2. As BRI2 hinders α-secretase cleavage of the AD-related Aβ-Precursor-Protein, we probed whether BRI2 influences TREM2 processing. Our findings indicate a BRI2-TREM2 interaction that inhibits TREM2 processing in heterologous cells. Recombinant BRI2 and TREM2 proteins demonstrate a direct, cell-free BRI2-TREM2 ectodomain interaction. Constitutive and microglial-specific Itm2b-Knock-out mice, and Itm2b-Knock-out primary microglia provide evidence that Bri2 reduces Trem2 processing, boosts Trem2 mRNA expression, and influences Trem2 protein levels through α-secretase-independent pathways, revealing a multifaceted BRI2-TREM2 functional interaction. Moreover, a mutant Itm2b dementia mouse model exhibits elevated Trem2-CTF and sTrem2, mirroring sTREM2 increases in AD patients. Lastly, Bri2 deletion reduces phagocytosis similarly to a pathogenic TREM2 variant that enhances processing. Given BRI2's role in regulating Aβ-Precursor-Protein and TREM2 functions, it holds promise as a therapeutic target for AD and related dementias.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| | - Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Yesiltepe M, Yin T, D’Adamio L. Beyond amyloid: altered gene function in neurodegenerative diseases. Aging (Albany NY) 2023; 15:9235-9237. [PMID: 37733660 PMCID: PMC10564419 DOI: 10.18632/aging.204717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 09/23/2023]
Affiliation(s)
- Metin Yesiltepe
- Department of Pharmacology, Physiology and Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tao Yin
- Department of Pharmacology, Physiology and Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology and Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Yin T, D’Adamio L. BRI2-mediated regulation of TREM2 processing in microglia and its potential implications for Alzheimer's disease and related dementias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544924. [PMID: 37398330 PMCID: PMC10312752 DOI: 10.1101/2023.06.14.544924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
ITM2B/BRI2 mutations cause familial forms of Alzheimer's disease (AD)-related dementias by disrupting BRI2's protein function and leading to the accumulation of amyloidogenic peptides. Although typically studied in neurons, our findings show that BRI2 is highly expressed in microglia, which are crucial in AD pathogenesis due to the association of variants in the microglial gene TREM2 with increased AD risk. Our single-cell RNAseq (scRNAseq) analysis revealed a microglia cluster that depends on a Trem2 activity that is inhibited by Bri2, pointing to a functional interaction between Itm2b/Bri2 and Trem2. Given that the AD-related Amyloid-β Precursor protein (APP) and TREM2 undergo similar proteolytic processing, and that BRI2 inhibits APP processing, we hypothesized that BRI2 may also regulate TREM2 processing. We found that BRI2 interacts with Trem2 and inhibits its processing by α-secretase in transfected cells. In mice lacking Bri2 expression, we observed increased central nervous system (CNS) levels of Trem2-CTF and sTrem2, which are the products of α-secretase processing of Trem2, indicating increased Trem2 processing by α-secretase in vivo. Reducing Bri2 expression only in microglia resulted in increased sTrem2 levels, suggesting a cell-autonomous effect of Bri2 on α-secretase processing of Trem2. Our study reveals a previously unknow role of BRI2 in regulating TREM2-related neurodegenerative mechanisms. The ability of BRI2 to regulate the processing of both APP and TREM2, combined with its cell-autonomous role in neurons and microglia, makes it a promising candidate for the development of AD and AD-related dementias therapeutics.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Luciano D’Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer’s Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA
| |
Collapse
|
5
|
Qian Z, Qin J, Lai Y, Zhang C, Zhang X. Large-Scale Integration of Single-Cell RNA-Seq Data Reveals Astrocyte Diversity and Transcriptomic Modules across Six Central Nervous System Disorders. Biomolecules 2023; 13:692. [PMID: 37189441 PMCID: PMC10135484 DOI: 10.3390/biom13040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The dysfunction of astrocytes in response to environmental factors contributes to many neurological diseases by impacting neuroinflammation responses, glutamate and ion homeostasis, and cholesterol and sphingolipid metabolism, which calls for comprehensive and high-resolution analysis. However, single-cell transcriptome analyses of astrocytes have been hampered by the sparseness of human brain specimens. Here, we demonstrate how large-scale integration of multi-omics data, including single-cell and spatial transcriptomic and proteomic data, overcomes these limitations. We created a single-cell transcriptomic dataset of human brains by integration, consensus annotation, and analyzing 302 publicly available single-cell RNA-sequencing (scRNA-seq) datasets, highlighting the power to resolve previously unidentifiable astrocyte subpopulations. The resulting dataset includes nearly one million cells that span a wide variety of diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), epilepsy (Epi), and chronic traumatic encephalopathy (CTE). We profiled the astrocytes at three levels, subtype compositions, regulatory modules, and cell-cell communications, and comprehensively depicted the heterogeneity of pathological astrocytes. We constructed seven transcriptomic modules that are involved in the onset and progress of disease development, such as the M2 ECM and M4 stress modules. We validated that the M2 ECM module could furnish potential markers for AD early diagnosis at both the transcriptome and protein levels. In order to accomplish a high-resolution, local identification of astrocyte subtypes, we also carried out a spatial transcriptome analysis of mouse brains using the integrated dataset as a reference. We found that astrocyte subtypes are regionally heterogeneous. We identified dynamic cell-cell interactions in different disorders and found that astrocytes participate in key signaling pathways, such as NRG3-ERBB4, in epilepsy. Our work supports the utility of large-scale integration of single-cell transcriptomic data, which offers new insights into underlying multiple CNS disease mechanisms where astrocytes are involved.
Collapse
Affiliation(s)
- Zhenwei Qian
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinglin Qin
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yiwen Lai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing 210000, China
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Rhyu JM, Park J, Shin BS, Kim YE, Kim EJ, Kim KW, Cho YG. A Novel c.800G>C Variant of the ITM2B Gene in Familial Korean Dementia. J Alzheimers Dis 2023; 93:403-409. [PMID: 37038821 DOI: 10.3233/jad-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Mutations in ITM2B have been reported to be associated with several familial dementias, such as Familial British dementia and familial Danish dementia. These are autosomal dominant disorders characterized by progressive dementia with an onset at around the fifth decade of life. We describe a family with cognitive impairment caused by a novel ITM2B p.*267Serext*11 mutation. The probands presented with cognitive impairment and cerebral infarction. MRI revealed diffuse white matter hyperintensity and microbleeds. Amyloid deposition was not observed on amyloid positron emission tomography. Our case suggests that the BRI2 mutation impacts cognition regardless of amyloid-β accumulation.
Collapse
Affiliation(s)
- Jee-Min Rhyu
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Byoung-Soo Shin
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun-Joo Kim
- Department of Neurology, Pusan National University Hospital, Busan, South Korea
| | - Ko Woon Kim
- Department of Neurology, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Yong Gon Cho
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
7
|
Spurrier J, Nicholson L, Fang XT, Stoner AJ, Toyonaga T, Holden D, Siegert TR, Laird W, Allnutt MA, Chiasseu M, Brody AH, Takahashi H, Nies SH, Pérez-Cañamás A, Sadasivam P, Lee S, Li S, Zhang L, Huang YH, Carson RE, Cai Z, Strittmatter SM. Reversal of synapse loss in Alzheimer mouse models by targeting mGluR5 to prevent synaptic tagging by C1Q. Sci Transl Med 2022; 14:eabi8593. [PMID: 35648810 PMCID: PMC9554345 DOI: 10.1126/scitranslmed.abi8593] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents β-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.
Collapse
Affiliation(s)
- Joshua Spurrier
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - LaShae Nicholson
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xiaotian T Fang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Austin J Stoner
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Takuya Toyonaga
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Daniel Holden
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - William Laird
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mary Alice Allnutt
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marius Chiasseu
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - A Harrison Brody
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Hideyuki Takahashi
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sarah Helena Nies
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen 72074, Germany
| | - Azucena Pérez-Cañamás
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pragalath Sadasivam
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Le Zhang
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yiyun H Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Richard E Carson
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Zhengxin Cai
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration and Repair Program, Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
8
|
Martins F, Santos I, da Cruz E Silva OAB, Tambaro S, Rebelo S. The role of the integral type II transmembrane protein BRI2 in health and disease. Cell Mol Life Sci 2021; 78:6807-6822. [PMID: 34480585 PMCID: PMC11072861 DOI: 10.1007/s00018-021-03932-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/07/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
BRI2 is a type II transmembrane protein ubiquitously expressed whose physiological function remains poorly understood. Although several recent important advances have substantially impacted on our understanding of BRI2 biology and function, providing valuable information for further studies on BRI2. These findings have contributed to a better understanding of BRI2 biology and the underlying signaling pathways involved. In turn, these might provide novel insights with respect to neurodegeneration processes inherent to BRI2-related pathologies, namely Familial British and Danish dementias, Alzheimer's disease, ITM2B-related retinal dystrophy, and multiple sclerosis. In this review, we provided a state-of-the-art outline of BRI2 biology, both in physiological and pathological conditions, and discuss the proposed molecular underlying mechanisms. Overall, the BRI2 knowledge here reviewed is of extreme importance and may contribute to propose BRI2 and/or BRI2 proteolytic fragments as novel therapeutic targets for neurodegenerative diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Filipa Martins
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Isabela Santos
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Sandra Rebelo
- Neuroscience and Signaling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Xiao X, Guo L, Liao X, Zhou Y, Zhang W, Zhou L, Wang X, Liu X, Liu H, Xu T, Zhu Y, Yang Q, Hao X, Liu Y, Wang J, Li J, Jiao B, Shen L. The role of vascular dementia associated genes in patients with Alzheimer's disease: A large case-control study in the Chinese population. CNS Neurosci Ther 2021; 27:1531-1539. [PMID: 34551193 PMCID: PMC8611771 DOI: 10.1111/cns.13730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 12/16/2022] Open
Abstract
Aim The role of vascular dementia (VaD)‐associated genes in Alzheimer's disease (AD) remains elusive despite similar clinical and pathological features. We aimed to explore the relationship between these genes and AD in the Chinese population. Methods Eight VaD‐associated genes were screened by a targeted sequencing panel in a sample of 3604 individuals comprising 1192 AD patients and 2412 cognitively normal controls. Variants were categorized into common variants and rare variants according to minor allele frequency (MAF). Common variant (MAF ≥ 0.01)‐based association analysis was conducted by PLINK 1.9. Rare variant (MAF < 0.01) association study and gene‐based aggregation testing of rare variants were performed by PLINK 1.9 and Sequence Kernel Association Test‐Optimal (SKAT‐O test), respectively. Age at onset (AAO) and Mini‐Mental State Examination (MMSE) association studies were performed with PLINK 1.9. Analyses were adjusted for age, gender, and APOE ε4 status. Results Four common COL4A1 variants, including rs874203, rs874204, rs16975492, and rs1373744, exhibited suggestive associations with AD. Five rare variants, NOTCH3 rs201436750, COL4A1 rs747972545, COL4A1 rs201481886, CST3 rs765692764, and CST3 rs140837441, showed nominal association with AD risk. Gene‐based aggregation testing revealed that HTRA1 was nominally associated with AD. In the AAO and MMSE association studies, variants in GSN, ITM2B, and COL4A1 reached suggestive significance. Conclusion Common variants in COL4A1 and rare variants in HTRA1, NOTCH3, COL4A1, and CST3 may be implicated in AD pathogenesis. Besides, GSN, ITM2B, and COL4A1 are probably involved in the development of AD endophenotypes.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Liao
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tianyan Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Zhu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qijie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoli Hao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yingzi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
10
|
First identification of ITM2B interactome in the human retina. Sci Rep 2021; 11:17210. [PMID: 34446781 PMCID: PMC8390696 DOI: 10.1038/s41598-021-96571-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Integral Membrane Protein 2 B (ITM2B) is a type II ubiquitous transmembrane protein which role remains unclear. ITM2B mutations have been associated with different disorders: mutations leading to longer mutant proteins have been reported in two distinct Alzheimer-like autosomal dominant disorders with early-onset progressive dementia and cerebellar ataxia. Both disorders share neurological features including severe cerebral amyloid angiopathy, non-neuritic plaques, and fibrillary tangles as in Alzheimer disease. Our group reported a missense mutation in ITM2B, in an unusual retinal dystrophy with no dementia. This finding suggests a specific role of ITM2B in the retina. As the identification of retinal-specific ITM2B partners could bring new insights into the cellular functions of ITM2B, we performed quantitative proteomics of ITM2B interactome of the human retina. Overall, 457 ITM2B partners were identified with 8 of them involved in visual transduction. In addition, bulk Gene Ontology analyses showed that many ITM2B partners are involved in several other biological functions, such as microtubule organization, protein translation and interestingly, mitochondrial homeostasis. These data represent the first report of the ITM2B interactome in the human retina and may serve as a valuable inventory of new potential ITM2B partners for future investigations of ITM2B physiological functions and dysfunctions.
Collapse
|
11
|
A familial Danish dementia rat shows impaired presynaptic and postsynaptic glutamatergic transmission. J Biol Chem 2021; 297:101089. [PMID: 34416235 PMCID: PMC8429969 DOI: 10.1016/j.jbc.2021.101089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Familial British dementia and familial Danish dementia are neurodegenerative disorders caused by mutations in the gene integral membrane protein 2B (ITM2b) encoding BRI2, which tunes excitatory synaptic transmission at both presynaptic and postsynaptic termini. In addition, BRI2 interacts with and modulates proteolytic processing of amyloid-β precursor protein (APP), whose mutations cause familial forms of Alzheimer's disease (AD) (familial AD). To study the pathogenic mechanisms triggered by the Danish mutation, we generated rats carrying the Danish mutation in the rat Itm2b gene (Itm2bD rats). Given the BRI2/APP interaction and the widely accepted relevance of human amyloid β (Aβ), a proteolytic product of APP, to AD, Itm2bD rats were engineered to express two humanized App alleles and produce human Aβ. Here, we studied young Itm2bD rats to investigate early pathogenic changes in these diseases. We found that periadolescent Itm2bD rats not only present subtle changes in human Aβ levels along with decreased spontaneous glutamate release and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor–mediated responses but also had increased short-term synaptic facilitation in the hippocampal Schaeffer-collateral pathway. These alterations in excitatory interneuronal communication can impair learning and memory processes and were akin to those observed in adult mice producing rodent Aβ and carrying either the Danish or British mutations in the mouse Itm2b gene. Collectively, the data show that the pathogenic Danish mutation alters the physiological function of BRI2 at glutamatergic synapses across species and early in life. Future studies will determine whether this phenomenon represents an early pathogenic event in human dementia.
Collapse
|
12
|
Yamamoto K, Yamamoto R, Kato N. Amyloid β and Amyloid Precursor Protein Synergistically Suppress Large-Conductance Calcium-Activated Potassium Channel in Cortical Neurons. Front Aging Neurosci 2021; 13:660319. [PMID: 34149396 PMCID: PMC8211014 DOI: 10.3389/fnagi.2021.660319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Intracellular amyloid β (Aβ) injection suppresses the large-conductance calcium-dependent potassium (BK) channel in cortical pyramidal cells from wild-type (WT) mice. In 3xTg Alzheimer’s disease (AD) model mice, intraneuronal Aβ is genetically programed to accumulate, which suppresses the BK channel. However, the mode of BK channel suppression remained unclarified. The present report revealed that only one (11A1) of the three anti-Aβ-oligomer antibodies that we examined, but not anti-monomer-Aβ-antibodies, was effective in recovering BK channel activity in 3xTg neurons. Antibodies against amyloid precursor protein (APP) were also found to be effective, suggesting that APP plays an essential part in this Aβ-oligomer-induced BK channel suppression in 3xTg neurons. In WT neurons, by contrast, APP suppressed BK channels by itself, which suggests that either APP or Aβ is sufficient to block BK channels, thus pointing to a different co-operativity of Aβ and APP in WT and 3xTg neurons. To clarify this difference, we relied on our previous finding that the scaffold protein Homer1a reverses the BK channel blockade in both WT and 3xTg neurons. In cortical neurons from 3xTg mice that bear Homer1a knockout (4xTg mice), neither anti-APP antibodies nor 11A1, but only the 6E10 antibody that binds both APP and Aβ, rescued the BK channel suppression. Given that Homer1a expression is activity dependent and 3xTg neurons are hyperexcitable, Homer1a is likely to be expressed sufficiently in 3xTg neurons, thereby alleviating the suppressive influence of APP and Aβ on BK channel. A unique way that APP modifies Aβ toxicity is thus proposed.
Collapse
Affiliation(s)
- Kenji Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan.,Department of Neurology and Clinical Research Center, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
13
|
Liu X, Chen KL, Wang Y, Huang YY, Chen SD, Dong Q, Cui M, Yu JT. A Novel ITM2B Mutation Associated with Familial Chinese Dementia. J Alzheimers Dis 2021; 81:499-505. [PMID: 33814452 DOI: 10.3233/jad-210176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in ITM2B have been found to be associated with familial Danish dementia (FDD) and familial British dementia (FBD). Here, we describe a patient with dementia caused by a novel ITM2B p.*267Leuext*11 mutation. The patient presented with dementia, ataxia, deafness, and paraplegia. Amyloid PET and Tau PET showed abnormal deposition of amyloid and tau protein in brain. Summarized from previous 26 FBD and FDD cases, the clinical phenotype of ITM2B; p.*267Leuext*11 mutation in ITM2B is different from the features of FBD and FDD. Our findings increased genetic knowledge of familial dementia and extend the ethnic distribution of ITM2B mutations.
Collapse
Affiliation(s)
- Xin Liu
- Department of Neurology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Ke-Liang Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Nassisi M, Wohlschlegel J, Liu B, Letellier C, Michiels C, Aubois A, Mohand-Said S, Habas C, Sahel JA, Zeitz C, Audo I. DEEP PHENOTYPING AND FURTHER INSIGHTS INTO ITM2B-RELATED RETINAL DYSTROPHY. Retina 2021; 41:872-881. [PMID: 32826790 DOI: 10.1097/iae.0000000000002953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina. METHODS The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts. The cellular expression of ITM2B within the inner retina was investigated in wild-type mice through mRNA in situ hybridization. RESULTS All patients complained of decreased vision and mild photophobia around their twenties-thirties. The peculiar feature was the hyperreflective material on optical coherence tomography within the inner retina and the central outer nuclear layer with thinning of the retinal nerve fiber layer. Although retinal imaging revealed very mild or no changes over the years, the visual acuity slowly decreased with about one Early Treatment Diabetic Retinopathy Study letter per year. Finally, full-field electroretinography showed a mildly progressive inner retinal and cone dysfunction. ITM2B mRNA is expressed in all cellular types of the inner retina. Disease mechanism most likely involves mutant protein misfolding and/or modified protein interaction rather than misplicing. CONCLUSION ITM2B-related retinal dystrophy is a peculiar, rare, slowly progressive retinal degeneration. Functional examinations (full-field electroretinography and visual acuity) seem more accurate in monitoring the progression in these patients because imaging tends to be stable over the years.
Collapse
Affiliation(s)
- Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - Bingqian Liu
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Camille Letellier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Anne Aubois
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | - Saddek Mohand-Said
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
| | | | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Fondation Ophtalmologique Adolphe de Rothschild, Paris, France
- Department of Ophthalmology, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
- Académie des Sciences-Institut de France, Paris, France ; and
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DGOS CIC1423, Paris, France
- Institute of Ophthalmology, University College of London, London, United Kingdom
| |
Collapse
|
15
|
Ren S, Breuillaud L, Yao W, Yin T, Norris KA, Zehntner SP, D'Adamio L. TNF-α-mediated reduction in inhibitory neurotransmission precedes sporadic Alzheimer's disease pathology in young Trem2 R47H rats. J Biol Chem 2021; 296:100089. [PMID: 33434745 PMCID: PMC7949092 DOI: 10.1074/jbc.ra120.016395] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative dementia associated with deposition of amyloid plaques and neurofibrillary tangles, formed by amyloid β (Aβ) peptides and phosphor-tau, respectively, in the central nervous system. Approximately 2% of AD cases are due to familial AD (FAD); ∼98% of cases are sporadic AD (SAD). Animal models with FAD are commonly used to study SAD pathogenesis. Because mechanisms leading to FAD and SAD may be distinct, to study SAD pathogenesis, we generated Trem2R47H knock-in rats, which carry the SAD risk factor p.R47H variant of the microglia gene triggering receptor expressed on myeloid cells 2 (TREM2). Trem2R47H rats produce human-Aβ from a humanized-App rat allele because human-Aβ is more toxic than rodent-Aβ and the pathogenic role of the p.R47H TREM2 variant has been linked to human-Aβ-clearing deficits. Using periadolescent Trem2R47H rats, we previously demonstrated that supraphysiological tumor necrosis factor-α (TNF-α) boosts glutamatergic transmission, which is excitatory, and suppresses long-term potentiation, a surrogate of learning and memory. Here, we tested the effect of the p.R47H variant on the inhibitory neurotransmitter γ-aminobutyric acid. We report that GABAergic transmission is decreased in Trem2R47H/R47H rats. This decrease is due to acute and reversible action of TNF-α and is not associated with increased human-Aβ levels and AD pathology. Thus, the p.R47H variant changes the excitatory/inhibitory balance, favoring excitation. This imbalance could potentiate glutamate excitotoxicity and contribute to neuronal dysfunction, enhanced neuronal death, and neurodegeneration. Future studies will determine whether this imbalance represents an early, Aβ-independent pathway leading to dementia and may reveal the AD-modifying therapeutic potential of TNF-α inhibition in the central nervous system.
Collapse
Affiliation(s)
- Siqiang Ren
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | - Wen Yao
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Kelly A Norris
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | | | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
16
|
Yin T, Yao W, Lemenze AD, D'Adamio L. Danish and British dementia ITM2b/BRI2 mutations reduce BRI2 protein stability and impair glutamatergic synaptic transmission. J Biol Chem 2020; 296:100054. [PMID: 33172889 PMCID: PMC7948410 DOI: 10.1074/jbc.ra120.015679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mutations in integral membrane protein 2B (ITM2b/BRI2) gene cause familial British and Danish dementia (FBD and FDD), autosomal dominant disorders characterized by progressive cognitive deterioration. Two pathogenic mechanisms, which may not be mutually exclusive, have been proposed for FDD and FBD: 1) loss of BRI2 function; 2) accumulation of amyloidogenic mutant BRI2-derived peptides, but the mechanistic details remain unclear. We have previously reported a physiological role of BRI2 in excitatory synaptic transmission at both presynaptic termini and postsynaptic termini. To test whether pathogenic ITM2b mutations affect these physiological BRI2 functions, we analyzed glutamatergic transmission in FDD and FBD knock-in mice, which carry pathogenic FDD and FBD mutations into the mouse endogenous Itm2b gene. We show that in both mutant lines, spontaneous glutamate release and AMPAR-mediated responses are decreased, while short-term synaptic facilitation is increased, effects similar to those observed in Itm2bKO mice. In vivo and in vitro studies show that both pathogenic mutations alter maturation of BRI2 resulting in reduced levels of functional mature BRI2 protein at synapses. Collectively, the data show that FDD and FBD mutations cause a reduction of BRI2 levels and function at synapses, which results in reduced glutamatergic transmission. Notably, other genes mutated in Familial dementia, such as APP, PSEN1/PSEN2, are implicated in glutamatergic synaptic transmission, a function that is altered by pathogenic mutations. Thus, defects in excitatory neurotransmitter release may represent a general and convergent mechanism leading to neurodegeneration. Targeting these dysfunction may offer a unique disease modifying method of therapeutic intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Tao Yin
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Wen Yao
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Alexander D Lemenze
- Department of Pathology, Immunology, and Laboratory Medicine, New Jersey Medical School, The State University of New Jersey, Newark, New Jersey, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, New Jersey, USA.
| |
Collapse
|
17
|
Ren S, Yao W, Tambini MD, Yin T, Norris KA, D'Adamio L. Microglia TREM2R47H Alzheimer-linked variant enhances excitatory transmission and reduces LTP via increased TNF-α levels. eLife 2020; 9:57513. [PMID: 32579116 PMCID: PMC7338048 DOI: 10.7554/elife.57513] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023] Open
Abstract
To study the mechanisms by which the p.R47H variant of the microglia gene and Alzheimer’s disease (AD) risk factor TREM2 increases dementia risk, we created Trem2R47H KI rats. Trem2R47H rats were engineered to produce human Aβ to define human-Aβ-dependent and -independent pathogenic mechanisms triggered by this variant. Interestingly, pre- and peri-adolescent Trem2R47H rats present increased brain concentrations of TNF-α, augmented glutamatergic transmission, suppression of Long-term-Potentiation (LTP), an electrophysiological surrogate of learning and memory, but normal Aβ levels. Acute reduction of TNF-α activity with a neutralizing anti-TNF-α antibody occludes the boost in amplitude of glutamatergic transmission and LTP suppression observed in young Trem2R47H/R47H rats. Thus, the microglia-specific pathogenic Trem2 variant boosts glutamatergic neuronal transmission and suppresses LTP by increasing brain TNF-α concentrations, directly linking microglia to neuronal dysfunction. Future studies will determine whether this phenomenon represents an early, Aβ-independent pathway that facilitates dementia pathogenesis in humans.
Collapse
Affiliation(s)
- Siqiang Ren
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Wen Yao
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Marc D Tambini
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Tao Yin
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Kelly A Norris
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Newark, United States.,Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, Newark, United States
| |
Collapse
|
18
|
Thygesen C, Larsen MR, Finsen B. Proteomic signatures of neuroinflammation in Alzheimer’s disease, multiple sclerosis and ischemic stroke. Expert Rev Proteomics 2019; 16:601-611. [DOI: 10.1080/14789450.2019.1633919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Camilla Thygesen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Rössel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|