1
|
Nieuwenhuizen NE, Nouailles G, Sutherland JS, Zyla J, Pasternack AH, Heyckendorf J, Frye BC, Höhne K, Zedler U, Bandermann S, Abu Abed U, Brinkmann V, Gutbier B, Witzenrath M, Suttorp N, Zissel G, Lange C, Ritvos O, Kaufmann SHE. Activin A levels are raised during human tuberculosis and blockade of the activin signaling axis influences murine responses to M. tuberculosis infection. mBio 2024; 15:e0340823. [PMID: 38376260 PMCID: PMC10936190 DOI: 10.1128/mbio.03408-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Activin A strongly influences immune responses; yet, few studies have examined its role in infectious diseases. We measured serum activin A levels in two independent tuberculosis (TB) patient cohorts and in patients with pneumonia and sarcoidosis. Serum activin A levels were increased in TB patients compared to healthy controls, including those with positive tuberculin skin tests, and paralleled severity of disease, assessed by X-ray scores. In pneumonia patients, serum activin A levels were also raised, but in sarcoidosis patients, levels were lower. To determine whether blockade of the activin A signaling axis could play a functional role in TB, we harnessed a soluble activin type IIB receptor fused to human IgG1 Fc, ActRIIB-Fc, as a ligand trap in a murine TB model. The administration of ActRIIB-Fc to Mycobacterium tuberculosis-infected mice resulted in decreased bacterial loads and increased numbers of CD4 effector T cells and tissue-resident memory T cells in the lung. Increased frequencies of tissue-resident memory T cells corresponded with downregulated T-bet expression in lung CD4 and CD8 T cells. Altogether, the results suggest a disease-exacerbating role of ActRIIB signaling pathways. Serum activin A may be useful as a biomarker for diagnostic triage of active TB or monitoring of anti-tuberculosis therapy. IMPORTANCE Tuberculosis remains the leading cause of death by a bacterial pathogen. The etiologic agent of tuberculosis, Mycobacterium tuberculosis, can remain dormant in the infected host for years before causing disease. Significant effort has been made to identify biomarkers that can discriminate between latently infected and actively diseased individuals. We found that serum levels of the cytokine activin A were associated with increased lung pathology and could discriminate between active tuberculosis and tuberculin skin-test-positive healthy controls. Activin A signals through the ActRIIB receptor, which can be blocked by administration of the ligand trap ActRIIB-Fc, a soluble activin type IIB receptor fused to human IgG1 Fc. In a murine model of tuberculosis, we found that ActRIIB-Fc treatment reduced mycobacterial loads. Strikingly, ActRIIB-Fc treatment significantly increased the number of tissue-resident memory T cells. These results suggest a role for ActRIIB signaling pathways in host responses to Mycobacterium tuberculosis and activin A as a biomarker of ongoing disease.
Collapse
Affiliation(s)
- Natalie E. Nieuwenhuizen
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jayne S. Sutherland
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Joanna Zyla
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Arja H. Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Heyckendorf
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Björn C. Frye
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Höhne
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrike Zedler
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Ulrike Abu Abed
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Gernot Zissel
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stefan H. E. Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the CAPNETZ Study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| | - the DZIF TB study group
- Department of Immunology, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- Institute for Hygiene and Microbiology, Julius Maximilian University of Würzburg, Würzburg, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Vaccines and Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Pneumology, Clinic, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Chariteplatz, Berlin, Germany
- CAPNETZ STIFTUNG, Hannover, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany
- Baylor College of Medicine and Texas Children´s Hospital, Global TB Program, Houston, Texas, USA
- Max Planck Institute for Multidisciplinary Sciences, Emeritus Group Systems Immunology, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
2
|
Belitškin D, Munne P, Pant SM, Anttila JM, Suleymanova I, Belitškina K, Kirchhofer D, Janetka J, Käsper T, Jalil S, Pouwels J, Tervonen TA, Klefström J. Hepsin promotes breast tumor growth signaling via the TGFβ-EGFR axis. Mol Oncol 2024; 18:547-561. [PMID: 37872868 PMCID: PMC10920082 DOI: 10.1002/1878-0261.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Hepsin, a type II transmembrane serine protease, is commonly overexpressed in prostate and breast cancer. The hepsin protein is stabilized by the Ras-MAPK pathway, and, downstream, this protease regulates the degradation of extracellular matrix components and activates growth factor pathways, such as the hepatocyte growth factor (HGF) and transforming growth factor beta (TGFβ) pathway. However, how exactly active hepsin promotes cell proliferation machinery to sustain tumor growth is not fully understood. Here, we show that genetic deletion of the gene encoding hepsin (Hpn) in a WAP-Myc model of aggressive MYC-driven breast cancer inhibits tumor growth in the primary syngrafted sites and the growth of disseminated tumors in the lungs. The suppression of tumor growth upon loss of hepsin was accompanied by downregulation of TGFβ and EGFR signaling together with a reduction in epidermal growth factor receptor (EGFR) protein levels. We further demonstrate in 3D cultures of patient-derived breast cancer explants that both basal TGFβ signaling and EGFR protein expression are inhibited by neutralizing antibodies or small-molecule inhibitors of hepsin. The study demonstrates a role for hepsin as a regulator of cell proliferation and tumor growth through TGFβ and EGFR pathways, warranting consideration of hepsin as a potential indirect upstream target for therapeutic inhibition of TGFβ and EGFR pathways in cancer.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Shishir M. Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Johanna M. Anttila
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Kati Belitškina
- Pathology DepartmentNorth Estonia Medical CentreTallinnEstonia
| | - Daniel Kirchhofer
- Department of Early Discovery BiochemistryGenentech, Inc.South San FranciscoCAUSA
| | - James Janetka
- Department of Biochemistry and Molecular BiophysicsWashington University School of MedicineSt. LouisMOUSA
| | | | - Sami Jalil
- Stem Cells and Metabolism Research Program, Faculty of MedicineUniversity of HelsinkiFinland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Topi A. Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of MedicineUniversity of HelsinkiFinland
- Foundation for the Finnish Cancer Institute, Helsinki & FICAN SouthHelsinki University HospitalFinland
| |
Collapse
|
3
|
Yang S, Kang W, Choi D, Roh J, Park T. Dihydromyrcenol Modulates Involucrin Expression through the Akt Signaling Pathway. Int J Mol Sci 2024; 25:2246. [PMID: 38396923 PMCID: PMC10889318 DOI: 10.3390/ijms25042246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The epidermis serves as a protective barrier against external threats and is primarily composed of keratinocytes, which ultimately form corneocytes. Involucrin, a protein integral to the cornified envelope, plays a pivotal role in preserving the functional integrity of the skin barrier. Previous studies have shown that Akt plays an important role in keratinocyte differentiation and skin barrier development. This study investigated whether dihydromyrcenol (DHM), a plant-derived terpene, could increase involucrin production in keratinocytes and sought to elucidate the possible underlying mechanisms. To accomplish this objective, we assessed the alterations in involucrin by DHM through quantitative PCR and Western blot on the HaCaT cell line. The changes in the promoter levels were investigated using luciferase assays. Furthermore, upstream mechanisms were explored through the use of siRNA and inhibitors. To strengthen our findings, the results were subsequently validated in primary cells and 3D skin equivalents. DHM significantly increased involucrin mRNA and protein levels in a concentration-dependent manner. In addition, the Fyn-Akt signaling pathway was found to be required for DHM-induced involucrin expression, as inhibition of Fyn or Akt blocked the increase in involucrin mRNA induced by DHM. The transcription factor Sp1, which is recognized as one of the transcription factors for involucrin, was observed to be activated in response to DHM treatment. Moreover, DHM increased epidermal thickness in a 3D human skin model. These findings suggest that the modulation of involucrin expression with DHM could improve skin barrier function and highlight the importance of manipulating the Akt pathway to achieve this improvement.
Collapse
Affiliation(s)
| | | | | | | | - Taesun Park
- Department of Food and Nutrition, BK21 FOUR, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea; (S.Y.); (W.K.); (D.C.); (J.R.)
| |
Collapse
|
4
|
Barbosa S, Laureano NK, Hadiwikarta WW, Visioli F, Bonrouhi M, Pajdzik K, Conde-Lopez C, Herold-Mende C, Eidt G, Langie R, Lamers ML, Stögbauer F, Hess J, Kurth I, Jou A. The Role of SOX2 and SOX9 in Radioresistance and Tumor Recurrence. Cancers (Basel) 2024; 16:439. [PMID: 38275880 PMCID: PMC10814462 DOI: 10.3390/cancers16020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) exhibits considerable variability in patient outcome. It has been reported that SOX2 plays a role in proliferation, tumor growth, drug resistance, and metastasis in a variety of cancer types. Additionally, SOX9 has been implicated in immune tolerance and treatment failures. SOX2 and SOX9 induce treatment failure by a molecular mechanism that has not yet been elucidated. This study explores the inverse association of SOX2/SOX9 and their distinct expression in tumors, influencing the tumor microenvironment and radiotherapy responses. Through public RNA sequencing data, human biopsy samples, and knockdown cellular models, we explored the effects of inverted SOX2 and SOX9 expression. We found that patients expressing SOX2LowSOX9High showed decreased survival compared to SOX2HighSOX9Low. A survival analysis of patients stratified by radiotherapy and human papillomavirus brings additional clinical relevance. We identified a gene set signature comprising newly discovered candidate genes resulting from inverted SOX2/SOX9 expression. Moreover, the TGF-β pathway emerges as a significant predicted contributor to the overexpression of these candidate genes. In vitro findings reveal that silencing SOX2 enhances tumor radioresistance, while SOX9 silencing enhances radiosensitivity. These discoveries lay the groundwork for further studies on the therapeutic potential of transcription factors in optimizing HNSCC treatment.
Collapse
Affiliation(s)
- Silvia Barbosa
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Natalia Koerich Laureano
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Wahyu Wijaya Hadiwikarta
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
| | - Fernanda Visioli
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Mahnaz Bonrouhi
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Kinga Pajdzik
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Cristina Conde-Lopez
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christel Herold-Mende
- Department of Neurosurgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Gustavo Eidt
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Renan Langie
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Oral Pathology, Faculty of Dental Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-004, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Department of Morphological Sciences, Institute of Basic Health Science, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, RS, Brazil
| | - Fabian Stögbauer
- Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Germany and Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), 80337 Munich, Germany
| | - Jochen Hess
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology/Radiobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), 69120 Heidelberg, Germany
| | - Adriana Jou
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Faculty of Dentistry, Institute of Toxicology and Pharmacology, Pontifícial Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, RS, Brazil
| |
Collapse
|
5
|
Buryska S, Patel K, Wuertz B, Gaffney PM, Ondrey F. Potential Roles of Activin in Head and Neck Squamous Cell Carcinoma Progression and Mortality. Anticancer Res 2023; 43:5299-5310. [PMID: 38030164 PMCID: PMC11285815 DOI: 10.21873/anticanres.16733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND/AIM Activin, a member of the TGF-β super family of cytokines, is involved in head and neck squamous cell carcinoma (HNSCC). This study examined the constituents of the activin axis in order to further elucidate the role of activin A in HNSCC progression. MATERIALS AND METHODS Immunohistochemistry (IHC), reverse transcription polymerase chain reaction (RT-PCR), MTT, and matrigel invasion assays, in addition to analysis of the tumor cancer genome atlas (TCGA), were employed. RESULTS IHC in HNSCC and oral leukoplakia (OPL) lesions demonstrated increased expression of the inhibin subunit βA (INHBA) (p<0.0001), as well as activin receptor type IB (ACVR1B) (p<0.0032) compared to normal mucosa. TCGA analysis revealed increased INHBA expression was associated with lymph node positive tumors (p=0.024), decreased overall survival (p=0.0167), and decreased promoter methylation (p<0.0001). Concomitant up-regulated expression of gene pathways strongly correlated with INHBA expression demonstrated further deleterious effects on survival (p<0.0148). CONCLUSION Activin may be an important component of early carcinogenesis in OPL and HNSCC with unfavorable effects on clinical end-points such as survival.
Collapse
Affiliation(s)
- Seth Buryska
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| | - Ketan Patel
- North Memorial Health/Blaze Health, Minneapolis, MN, U.S.A
| | - Beverly Wuertz
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A.;
| | | | - Frank Ondrey
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
6
|
Khera N, Rajkumar AS, Abdulkader M Alkurdi K, Liu Z, Ma H, Waseem A, Teh MT. Identification of multidrug chemoresistant genes in head and neck squamous cell carcinoma cells. Mol Cancer 2023; 22:146. [PMID: 37667354 PMCID: PMC10476423 DOI: 10.1186/s12943-023-01846-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Multidrug resistance renders treatment failure in a large proportion of head and neck squamous cell carcinoma (HNSCC) patients that require multimodal therapy involving chemotherapy in conjunction with surgery and/or radiotherapy. Molecular events conferring chemoresistance remain unclear. Through transcriptome datamining, 28 genes were subjected to pharmacological and siRNA rescue functional assays on 12 strains of chemoresistant cell lines each against cisplatin, 5-fluorouracil (5FU), paclitaxel (PTX) and docetaxel (DTX). Ten multidrug chemoresistance genes (TOP2A, DNMT1, INHBA, CXCL8, NEK2, FOXO6, VIM, FOXM1B, NR3C1 and BIRC5) were identified. Of these, four genes (TOP2A, DNMT1, INHBA and NEK2) were upregulated in an HNSCC patient cohort (n = 221). Silencing NEK2 abrogated chemoresistance in all drug-resistant cell strains. INHBA and TOP2A were found to confer chemoresistance in majority of the drug-resistant cell strains whereas DNMT1 showed heterogeneous results. Pan-cancer Kaplan-Meier survival analysis on 21 human cancer types revealed significant prognostic values for INHBA and NEK2 in at least 16 cancer types. Drug library screens identified two compounds (Sirodesmin A and Carfilzomib) targeting both INHBA and NEK2 and re-sensitised cisplatin-resistant cells. We have provided the first evidence for NEK2 and INHBA in conferring chemoresistance in HNSCC cells and siRNA gene silencing of either gene abrogated multidrug chemoresistance. The two existing compounds could be repurposed to counteract cisplatin chemoresistance in HNSCC. This finding may lead to novel personalised biomarker-linked therapeutics that can prevent and/or abrogate chemoresistance in HNSCC and other tumour types with elevated NEK2 and INHBA expression. Further investigation is necessary to delineate their signalling mechanisms in tumour chemoresistance.
Collapse
Affiliation(s)
- Neha Khera
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK
| | - Asvika Soodhalaagunta Rajkumar
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK
| | - Khlood Abdulkader M Alkurdi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK
| | - Zhiao Liu
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Hong Ma
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, The Blizard Building, 4, Newark Street, London, E1 2AT, UK.
- China-British Joint Molecular Head and Neck Cancer Research Laboratory, Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China.
| |
Collapse
|
7
|
Bao Y, Li X, El-Samahy MA, Yang H, Wang Z, Yang F, Yao X, Wang F. Exploration the role of INHBA in Hu sheep granulosa cells using RNA-Seq. Theriogenology 2023; 197:198-208. [PMID: 36525859 DOI: 10.1016/j.theriogenology.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Activin/inhibin is an important factor for the fecundity of Hu sheep, and it is involved in follicular development in ovaries. Inhibin subunit beta A (INHBA) participates in the synthesis of activin A and inhibin A. In this study, we also noted a positive correlation between INHBA level and the secretion of both activin A and inhibin A in culture medium. Nevertheless, both knockdown and overexpression of INHBA downregulated the expression of Inhibin Subunit Alpha (INHA). Based on RNA-Sequencing, we further examined the effect and molecular mechanism of INHBA knockdown in GCs on mRNA expression. A total of 1,687 differentially expressed genes (DEGs) were identified (Fold change ≥ 2; False-discovory-rates (FDR) ≤ 0.01), of which 602 genes were upregulated and 1,087 genes were downregulated in the INHBA interference group compared with the control groups. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in the regulation of cell cycle, protein serine/threonine kinase activity, and actin cytoskeleton reorganization. Moreover, DEGs were significantly enriched in 40 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including P53, progesterone-mediated oocyte maturation, and PI3K-AKT signaling pathways. We also noted a positive correlation between INHBA level and many PI3K/Akt/mTOR pathway-related genes at the gene or/and protein expression. Overall, this study may contribute to a better understanding of the roles of INHBA on GCs of prolific sheep, as well as the molecular effect of low INHBA expression on GCs, clarifying some reproductive failures.
Collapse
Affiliation(s)
- Yongjin Bao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - M A El-Samahy
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Animal Production Research Institute, ARC, Ministry of Agriculture, Giza, Egypt
| | - Hua Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhibo Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Zhang Y, Zhang T, Xu L, Zhu Y, Zhao LL, Li XD, Yang WW, Chen J, Gu M, Gu XS, Yang J. Evolution of the ErbB gene family and analysis of regulators of Egfr expression during development of the rat spinal cord. Neural Regen Res 2022; 17:2484-2490. [PMID: 35535900 PMCID: PMC9120683 DOI: 10.4103/1673-5374.339010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Egfr, a member of the ErbB gene family, plays a critical role in tissue development and homeostasis, wound healing, and disease. However, expression and regulators of Egfr during spinal cord development remain poorly understood. In this study, we investigated ErbB evolution and analyzed co-expression modules, miRNAs, and transcription factors that may regulate Egfr expression in rats. We found that ErbB family members formed via Egfr duplication in the ancient vertebrates but diverged after speciation of gnathostomes. We identified a module that was co-expressed with Egfr, which involved cell proliferation and blood vessel development. We predicted 25 miRNAs and nine transcription factors that may regulate Egfr expression. Dual-luciferase reporter assays showed six out of nine transcription factors significantly affected Egfr promoter reporter activity. Two of these transcription factors (KLF1 and STAT3) inhibited the Egfr promoter reporter, whereas four transcription factors (including FOXA2) activated the Egfr promoter reporter. Real-time PCR and immunofluorescence experiments showed high expression of FOXA2 during the embryonic period and FOXA2 was expressed in the floor plate of the spinal cord, suggesting the importance of FOXA2 during embryonic spinal cord development. Considering the importance of Egfr in embryonic spinal cord development, wound healing, and disease (specifically in cancer), regulatory elements identified in this study may provide candidate targets for nerve regeneration and disease treatment in the future.
Collapse
Affiliation(s)
- Yu Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Tao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Ye Zhu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Di Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wei-Wei Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Miao Gu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Xiao-Song Gu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Zhang S, Jin K, Li T, Zhou M, Yang W. Comprehensive analysis of INHBA: A biomarker for anti-TGFβ treatment in head and neck cancer. Exp Biol Med (Maywood) 2022; 247:1317-1329. [PMID: 35521936 PMCID: PMC9442453 DOI: 10.1177/15353702221085203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inhibin subunit βA (INHBA) is a protein-coding gene belonging to the transforming growth factor β (TGFβ) superfamily, which is associated with the development of a variety of cancers. However, the role of INHBA in head and neck squamous cell carcinoma (HNSC) remains unclear. The expression profile and prognostic significance of INHBA in HNSC were assessed using a variety of informatics methods. The level of INHBA expression was significantly higher in patients with HNSC, and it was correlated with sex, tumor-node-metastasis (TNM) stage, histological grade, and human papillomavirus (HPV) status. Kaplan-Meier (K-M) analysis indicated that poor overall survival (OS) and disease-free survival (DFS) were significantly associated with INHBA upregulation in HNSC. INHBA overexpression was validated as an independent poor prognostic factor by multivariate Cox regression, and including INHBA expression level in the prognostic model could increase prediction accuracy. In addition, copy number alterations (CNAs) of INHBA and miR-217-5p downregulation are potential mechanisms for elevated INHBA expression in HNSC. In conclusion, INHBA may represent a promising predictive biomarker and candidate target for anti-TGFβ therapy in HNSC.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyu Jin
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Tianle Li
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Maolin Zhou
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases,
National Clinical Research Center for Oral Diseases, Department of Oral and
Maxillofacial Surgery, Department of Medical Affairs, West China Hospital of
Stomatology, Sichuan University, Chengdu 610041, China,Wenbin Yang.
| |
Collapse
|
10
|
Li O, Zhao C, Zhang J, Li FN, Yang ZY, Liu SL, Cai C, Jia ZY, Gong W, Shu YJ, Dong P. UBAP2L promotes gastric cancer metastasis by activating NF-κB through PI3K/AKT pathway. Cell Death Discov 2022; 8:123. [PMID: 35304439 PMCID: PMC8933503 DOI: 10.1038/s41420-022-00916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitin-associated protein 2-like (UBAP2L) is highly expressed in various types of tumors and has been shown to participate in tumor growth and metastasis; however, its role in gastric cancer (GC) remains unknown. In this study, we observed that UBAP2L expression was markedly elevated in GC tissues and five GC cell lines. Higher expression of UBAP2L was associated with poor prognosis as revealed by bioinformatics analysis on online websites and laboratory experiments. Knockdown of UBAP2L impeded the migration and invasion abilities of GC cell lines. In contrast, its overexpression enhanced the migration and invasion abilities of GC cell lines. Overexpression of UBAP2L also increased the number and size of lung metastatic nodules in vivo. According to the results of mass spectrometry and pathway annotation of the identified proteins, the PI3K/AKT pathway was found to be related to UBAP2L regulation. Further exploration and rescue experiments revealed that UBAP2L stimulates the expression and nuclear aggregation of p65 and promotes the expression of SP1 by activating the PI3K/AKT pathway. In summary, our findings indicate that UBAP2L regulates GC metastasis through the PI3K/AKT/SP1/NF-κB axis. Thus, targeting UBAP2L may be a potential therapeutic strategy for GC.
Collapse
Affiliation(s)
- Ou Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Jian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Feng-Nan Li
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Chen Cai
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Zi-Yao Jia
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, 200092, Shanghai, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, 200092, Shanghai, China.
| |
Collapse
|
11
|
Zhao K, Yi Y, Ma Z, Zhang W. INHBA is a Prognostic Biomarker and Correlated With Immune Cell Infiltration in Cervical Cancer. Front Genet 2022; 12:705512. [PMID: 35058963 PMCID: PMC8764128 DOI: 10.3389/fgene.2021.705512] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Inhibin A (INHBA), a member of the TGF-β superfamily, has been shown to be differentially expressed in various cancer types and is associated with prognosis. However, its role in cervical cancer remains unclear. Methods: We aimed to demonstrate the relationship between INHBA expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated INHBA expression in cervical cancer using the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750 datasets. Enrichment analysis of INHBA was performed using the R package “clusterProfiler.” We analyzed the association between immune infiltration level and INHBA expression in cervical cancer using the single-sample gene set enrichment analysis (ssGSEA) method by the R package GSVA. We explored the association between INHBA expression and prognosis using the R package “survival”. Results: Pan-cancer data analysis showed that INHBA expression was elevated in 19 tumor types, including cervical cancer. We further confirmed that INHBA expression was higher in cervical cancer samples from GEO database and cervical cancer cell lines than in normal cervical cells. Survival prognosis analysis indicated that higher INHBA expression was significantly associated with reduced Overall Survival (p = 0.001), disease Specific Survival (p = 0.006), and Progression Free Interval (p = 0.001) in cervical cancer and poorer prognosis in other tumors. GSEA and infiltration analysis showed that INHBA expression was significantly associated with tumor progression and some types of immune infiltrating cells. Conclusion:INHBA was highly expressed in cervical cancer and was significantly associated with poor prognosis. Meanwhile, it was correlated with immune cell infiltration and could be used as a promising prognostic target for cervical cancer.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuexiong Yi
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020. [PMID: 33344262 DOI: 10.3389/fcimb.2020.537650,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India.,Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
13
|
Novel biomarkers for subtle myocardial involvement in type I diabetes mellitus. Cardiovasc Endocrinol Metab 2020; 10:175-181. [PMID: 34386719 PMCID: PMC8352619 DOI: 10.1097/xce.0000000000000240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 11/05/2022]
Abstract
Background Evaluation of certain biomarkers could be used to predict left ventricular (LV) and right ventricular (RV) function impairment in children with type 1 diabetes mellitus. The aim of this study was to determine the best cardiac biomarker for prediction of diabetic cardiomyopathy. Methodology This study was designed as case-control study. A total of 55 children with type 1 diabetes mellitus (group/G1) and 55 healthy controls (G2) were subjected to echocardiography including 3D-Speckle Tracking Echocardiography and tissue Doppler imaging for assessment of RV and LV systolic and diastolic functions. As well as HbA1c, troponin I, brain natriuretic peptide (BNP), plasma cardiotrophin (CT-1), activin-A, transforming growth factor-β, and human insulin-like growth factor binding protein-7 (IGFBP-7) measurements. Results Diabetic patients showed RV and LV systo-diastolic dysfunction compared to controls, the best predictor of LV systolic dysfunction was CT-1 (sensitivity: 69%, while IGFBP-7 was found to be the best predictor of RV systolic dysfunction (sensitivity: 63%). BNP was found to the best predictor of diastolic RV and LV dysfunction (sensitivity: 82% for both). Conclusion CT-1 has proven to be a diagnostic superiority in LV systolic dysfunction whilst BNP continues to prove every day through our study and through many others that it is the chief marker of diastolic dysfunction and HFpEF. This potential accuracy and the increasing availability of BNP in the outpatient setting make it clear that it should be used as a screening test for diabetic patients.
Collapse
|
14
|
Yu MC, Wu TH, Lee CW, Lee YS, Lian JH, Tsai CL, Hsieh SY, Tsai CN. Percentage genome change and chromosome 7q amplification predict sorafenib response in advanced hepatocellular carcinoma. Biomed J 2020; 44:S73-S83. [PMID: 35747997 PMCID: PMC9038951 DOI: 10.1016/j.bj.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) may arise from genomic instability and has dismal outcome. Sorafenib is the first-line treatment for advanced stage HCC, but its therapeutic efficacy is less than 50%. Biomarkers for predicting the therapeutic efficacy of sorafenib administration to patients with advanced HCC are required. Here, we evaluated the role of chromosomal copy number aberrations (CNAs) in patients with advanced HCC who were treated with sorafenib along with their drug response. Methods The response to sorafenib treatment of twenty-three HCC patients who developed advanced recurrence after partial hepatectomy was analyzed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST). Formalin fixed paraffin embedded (FFPE) tissue specimens obtained after tumor resection were analyzed using the Affymetrix OncoScan® FFPE assay. Results From the 23 patients analyzed in this study, 7 (30.4%) had complete/partial response to sorafenib (CR/PR), 7 (30.4%) had stable disease (SD), and 9 (39.1%) had progressive disease (PD). The mean genome-wide percentage of genome change acquisition via the OncoScan platform was 19.8% for patients with CR/PR/SD and 50.02% in the PD group (p = 0.055). Percentage of genome change above 33% was associated with adverse outcomes for sorafenib treatment in the time-to-progression analysis (p = 0.007) and overall survival (p = 0.096). Among these CNAs, amplification of chromosome 7q, containing the multidrug resistance gene ATP Binding Cassette Subfamily B Member 1 (ACBC1), significantly associated with poor overall survival (p = 0.004) and time-to-progression (p < 0.001). Conclusions Higher percentage genome change and amplification of chromosome 7q in advanced HCC is associated with sorafenib resistance.
Collapse
|
15
|
Ervolino De Oliveira C, Dourado MR, Sawazaki-Calone Í, Costa De Medeiros M, Rossa Júnior C, De Karla Cervigne N, Esquiche León J, Lambert D, Salo T, Graner E, Coletta RD. Activin A triggers angiogenesis via regulation of VEGFA and its overexpression is associated with poor prognosis of oral squamous cell carcinoma. Int J Oncol 2020; 57:364-376. [PMID: 32377747 DOI: 10.3892/ijo.2020.5058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/15/2020] [Indexed: 11/05/2022] Open
Abstract
Poor prognosis associated with the dysregulated expression of activin A in a number of malignancies has been related to with numerous aspects of tumorigenesis, including angiogenesis. The present study investigated the prognostic significance of activin A immunoexpression in blood vessels and cancer cells in a number of oral squamous cell carcinoma (OSCC) cases and applied in vitro strategies to determine the impact of activin A on angiogenesis. In a cohort of 95 patients with OSCC, immunoexpression of activin A in both blood vessels and tumor cells was quantified and the association with clinicopathological parameters and survival was analyzed. Effects of activin A on the tube formation, proliferation and migration of human umbilical vein endothelial cells (HUVECs) were evaluated in gain‑of‑function (treatment with recombinant activin A) or loss‑of‑function [treatment with activin A‑antagonist follistatin or by stable transfection with short hairpin RNA (shRNA) targeting activin A] conditions. Conditioned medium from an OSCC cell line with shRNA‑mediated depletion of activin A was also tested. The profile of pro‑ and anti‑angiogenic factors regulated by activin A was assessed with a human angiogenesis quantitative PCR (qPCR) array. Vascular endothelial growth factor A (VEGFA) and its major isoforms were evaluated by reverse transcription‑qPCR and ELISA. Activin A expression in blood vessels demonstrated an independent prognostic value in the multivariate analysis with a hazard ratio of 2.47 [95% confidence interval (CI), 1.30‑4.71; P=0.006) for disease‑specific survival and 2.09 (95% CI, 1.07‑4.08l: P=0.03) for disease‑free survival. Activin A significantly increased tubular formation of HUVECs concomitantly with an increase in proliferation. This effect was validated by reduced proliferation and tubular formation of HUVECs following inhibition of activin A by follistatin or shRNA, as well as by treatment of HUVECs with conditioned medium from activin A‑depleted OSCC cells. Activin A‑knockdown increased the migration of HUVECs. In addition, activin A stimulated the phosphorylation of SMAD2/3 and the expression and production of total VEGFA, significantly enhancing the expression of its pro‑angiogenic isoform 121. The present findings suggest that activin A is a predictor of the prognosis of patients with OSCC, and provide evidence that activin A, in an autocrine and paracrine manner, may contribute to OSCC angiogenesis through differential expression of the isoform 121 of VEGFA.
Collapse
Affiliation(s)
| | - Maurício Rocha Dourado
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP 13414‑018, Brazil
| | - Íris Sawazaki-Calone
- Department of Oral Pathology and Oral Medicine, Dentistry School, Western Paraná State University, Cascavel, PR 85819‑170, Brazil
| | - Marcell Costa De Medeiros
- Departament of Diagnosis and Surgery, School of Dentistry at Araraquara, Araraquara, SP 14801‑385, Brazil
| | - Carlos Rossa Júnior
- Departament of Diagnosis and Surgery, School of Dentistry at Araraquara, Araraquara, SP 14801‑385, Brazil
| | | | - Jorge Esquiche León
- Departament of Stomatology, Public Oral Health and Forensic Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040‑904, Brazil
| | - Daniel Lambert
- Integrated Biosciences, School of Clinical Dentistry and Sheffield Cancer Centre, University of Sheffield, Sheffield S10 2TG, UK
| | - Tuula Salo
- Cancer and Translational Medicine Research Unit, Faculty of Medicine and Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu 90220, Finland
| | - Edgard Graner
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP 13414‑018, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, SP 13414‑018, Brazil
| |
Collapse
|
16
|
Aggarwal N, Yadav J, Thakur K, Bibban R, Chhokar A, Tripathi T, Bhat A, Singh T, Jadli M, Singh U, Kashyap MK, Bharti AC. Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns. Front Cell Infect Microbiol 2020; 10:537650. [PMID: 33344262 PMCID: PMC7738612 DOI: 10.3389/fcimb.2020.537650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/02/2020] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.
Collapse
Affiliation(s)
- Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Rakhi Bibban
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Tejveer Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Mohit Jadli
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Ujala Singh
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Manoj K. Kashyap
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India
| | - Alok C. Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- *Correspondence: Alok C. Bharti,
| |
Collapse
|