1
|
Kennedy JP, Wood K, Pitino M, Mandadi K, Igwe DO, Shatters RG, Widmer TL, Niedz R, Heck M. A Perspective on Current Therapeutic Molecule Screening Methods Against ' Candidatus Liberibacter asiaticus', the Presumed Causative Agent of Citrus Huanglongbing. PHYTOPATHOLOGY 2023; 113:1171-1179. [PMID: 36750555 DOI: 10.1094/phyto-12-22-0455-per] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Huanglongbing (HLB), referred to as citrus greening disease, is a bacterial disease impacting citrus production worldwide and is fatal to young trees and mature trees of certain varieties. In some areas, the disease is devastating the citrus industry. A successful solution to HLB will be measured in economics: citrus growers need treatments that improve tree health, fruit production, and most importantly, economic yield. The profitability of citrus groves is the ultimate metric that truly matters when searching for solutions to HLB. Scientific approaches used in the laboratory, greenhouse, or field trials are critical to the discovery of those solutions and to estimate the likelihood of success of a treatment aimed at commercialization. Researchers and the citrus industry use a number of proxy evaluations of potential HLB solutions; understanding the strengths and limitations of each assay, as well as how best to compare different assays, is critical for decision-making to advance therapies into field trials and commercialization. This perspective aims to help the reader compare and understand the limitations of different proxy evaluation systems based on the treatment and evaluation under consideration. The researcher must determine the suitability of one or more of these metrics to identify treatments and predict the usefulness of these treatments in having an eventual impact on citrus production and HLB mitigation. As therapies advance to field trials in the next few years, a reevaluation of these metrics will be useful to guide future research efforts on strategies to mitigate HLB and vascular bacterial pathogens in other perennial crops.
Collapse
Affiliation(s)
- John Paul Kennedy
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | | | | | - Kranthi Mandadi
- Department of Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
- Texas A&M AgriLife Institute for Advancing Health Through Agriculture, Texas A&M AgriLife, College Station, TX 77843
| | - David O Igwe
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Robert G Shatters
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Timothy L Widmer
- U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Randall Niedz
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL 34945
| | - Michelle Heck
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Emerging Pests and Pathogens Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Ithaca, NY 14853
| |
Collapse
|
2
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
3
|
Pandey SS, Hendrich C, Andrade MO, Wang N. Candidatus Liberibacter: From Movement, Host Responses, to Symptom Development of Citrus Huanglongbing. PHYTOPATHOLOGY 2022; 112:55-68. [PMID: 34609203 DOI: 10.1094/phyto-08-21-0354-fi] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Candidatus Liberibacter spp. are fastidious α-proteobacteria that cause multiple diseases on plant hosts of economic importance, including the most devastating citrus disease: Huanglongbing (HLB). HLB was reported in Asia a century ago but has since spread worldwide. Understanding the pathogenesis of Candidatus Liberibacter spp. remains challenging as they are yet to be cultured in artificial media and infect the phloem, a sophisticated environment that is difficult to manipulate. Despite those challenges, tremendous progress has been made on Ca. Liberibacter pathosystems. Here, we first reviewed recent studies on genetic information of flagellar and type IV pili biosynthesis, their expression profiles, and movement of Ca. Liberibacter spp. inside the plant and insect hosts. Next, we reviewed the transcriptomic, proteomic, and metabolomic studies of susceptible and tolerant plant genotypes to Ca. Liberibacter spp. infection and how Ca. Liberibacter spp. adapt in plants. Analyses of the interactions between plants and Ca. Liberibacter spp. imply the involvement of immune response in the Ca. Liberibacter pathosystems. Lastly, we reviewed how Ca. Liberibacter spp. movement inside and interactions with plants lead to symptom development.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Connor Hendrich
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Maxuel O Andrade
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
4
|
Anaerobic granulation of single culture Clostridium beijerinckii. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Ferreira JRM, Sierra-Garcia IN, Guieu S, Silva AMS, da Silva RN, Cunha Â. Photodynamic control of citrus crop diseases. World J Microbiol Biotechnol 2021; 37:199. [PMID: 34664127 DOI: 10.1007/s11274-021-03171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
Citrus are economically important fruit crops to which infectious diseases like citrus canker caused by Xanthomonas citri subs. citri, citrus variegated chlorosis caused by Xylella fastidiosa, "huanglongbing" associated with the presence of Candidatus liberibacter species, anthracnose caused by Colletotrichum gloeosporioides and citrus black spot caused by Phyllosticta citricarpa, impose significant losses. Control measures involve chemical treatment of orchards but often, eradication of infected plants is unavoidable. To circumvent the environmental impacts of pesticides and the socio-economic impacts of eradication, innovative antimicrobial approaches like photodynamic inactivation are being tested. There is evidence of the susceptibility of Xanthomonas citri subs. citri and C. gloeosporioides to photodynamic damage. However, the realistic assessment of perspectives for widespread application of photodynamic inactivation in the control of citrus diseases, necessarily implies that other microorganisms are also considered. This review intends to provide a critical summary of the current state of research on photodynamic inactivation of citrus pathogens and to identify some of the current limitations to the widespread use of photodynamic treatments in citrus crops.
Collapse
Affiliation(s)
- Joana R M Ferreira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel N Sierra-Garcia
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Samuel Guieu
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,CICECO Aveiro-Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Raquel Nunes da Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.,IBiMED, Department of Medical Sciences, University of Aveiro, Campus do Crasto, 3810-193, Aveiro, Portugal
| | - Ângela Cunha
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
6
|
Pan L, Gardner CL, Beliakoff R, da Silva D, Zuo R, Pagliai FA, Padgett-Pagliai KA, Merli ML, Bahadiroglu E, Gonzalez CF, Lorca GL. PrbP modulates biofilm formation in Liberibacter crescens. Environ Microbiol 2021; 23:7121-7138. [PMID: 34431209 DOI: 10.1111/1462-2920.15740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/31/2022]
Abstract
In Liberibacter asiaticus, PrbP is a transcriptional regulatory protein involved in survival and persistence during host infection. Tolfenamic acid was previously found to inhibit interactions between PrbP and the promotor region of rplK, resulting in reduced survival of L. asiaticus in the citrus host. In this study, we performed transcriptome analyses to elucidate the PrbP regulon in L. crescens, as it is phylogenetically the closest related species to L. asiaticus that can be grown in laboratory conditions. Chemical inhibition of PrbP with tolfenamic acid revealed that PrbP is involved in the regulation of diverse cellular processes, including stress response, cell motility, cell cycle and biofilm formation. In vitro DNA binding and bacterial two-hybrid assays also suggested that PrbP is a global regulator of multiple transcription factors (RpoH, VisN, PleD, MucR, MocR and CtrA) at both transcriptional and/or post-transcriptional levels. Sub-lethal concentrations of tolfenamic acid significantly reduced the attachment of L. crescens during biofilm formation and decreased long-term persistence in biofilm structures. Overall, our findings show the importance of PrbP in regulating diverse biological processes through direct and indirect interactions with other transcriptional regulators in L. crescens.
Collapse
Affiliation(s)
- Lei Pan
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Reagan Beliakoff
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Danilo da Silva
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Ran Zuo
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Kaylie A Padgett-Pagliai
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Marcelo L Merli
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Erol Bahadiroglu
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute, Institute of Food and Agricultural Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Darolt JC, Bento FDMM, Merlin BL, Peña L, Cônsoli FL, Wulff NA. The Genome of " Candidatus Liberibacter asiaticus" Is Highly Transcribed When Infecting the Gut of Diaphorina citri. Front Microbiol 2021; 12:687725. [PMID: 34322103 PMCID: PMC8312247 DOI: 10.3389/fmicb.2021.687725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/13/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, is the vector of the bacterium "Candidatus Liberibacter asiaticus" (Las), associated with the devastating, worldwide citrus disease huanglongbing. In order to explore the molecular interactions of this bacterium with D. citri during the vector acquisition process, cDNA libraries were sequenced on an Illumina platform, obtained from the gut of adult psyllids confined in healthy (H) and in Las-infected young shoots (Las) for different periods of times (I = 1/2 days, II = 3/4 days, and III = 5/6 days). In each sampling time, three biological replicates were collected, containing 100 guts each, totaling 18 libraries depleted in ribosomal RNA. Reads were quality-filtered and mapped against the Chinese JXGC Las strain and the Floridian strain UF506 for the analysis of the activity of Las genome and SC1, SC2, and type 3 (P-JXGC-3) prophages of the studied Las strain. Gene activity was considered only if reads of at least two replicates for each acquisition access period mapped against the selected genomes, which resulted in coverages of 44.4, 79.9, and 94.5% of the JXGC predicted coding sequences in Las I, Las II, and Las III, respectively. These genes indicate an active metabolism and increased expression according to the feeding time in the following functional categories: energy production, amino acid metabolism, signal translation, cell wall, and replication and repair of genetic material. Pilins were among the most highly expressed genes regardless of the acquisition time, while only a few genes from cluster I of flagella were not expressed. Furthermore, the prophage region had a greater coverage of reads for SC1 and P-JXGC-3 prophages and low coverage in SC2 and no indication of activity for the lysis cycle. This research presents the first descriptive analysis of Las transcriptome in the initial steps of the D. citri gut colonization, where 95% of Las genes were active.
Collapse
Affiliation(s)
- Josiane Cecília Darolt
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| | - Flavia de Moura Manoel Bento
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Bruna Laís Merlin
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Leandro Peña
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
- Instituto de Biologia Molecular y Celular de Plantas – Consejo Superior de Investigaciones Científicas, Universidade Politécnica de Valencia, Valencia, Spain
| | - Fernando Luis Cônsoli
- Laboratório de Interações em Insetos, Departamento de Entomologia e Acarologia, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Nelson Arno Wulff
- Instituto de Química, Universidade Estadual Paulista “Julio de Mesquita Filho” – UNESP, Araraquara, Brazil
- Departamento de Pesquisa & Desenvolvimento, Fundo de Defesa da Citricultura – Fundecitrus, Araraquara, Brazil
| |
Collapse
|
8
|
Zhang Z, Han Q, Mao X, Liu J, Wang W, Li D, Zhou F, Ke Y, Xu L, Hu L. Discovery of novel SecA inhibitors against "Candidatus Liberibacter asiaticus" through virtual screening and biological evaluation. Chem Biol Drug Des 2021; 98:395-404. [PMID: 33963664 DOI: 10.1111/cbdd.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/07/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
"Candidatus Liberibacter asiaticus" (Ca. L. asiaticus) is the causal agent of Huanglongbing disease of citrus and current study focuses on the discovery of novel small-molecule inhibitors against SecA protein of Ca. L. asiaticus. In this study, homologous modeling was used to construct the three-dimensional structure of SecA. Then, molecular docking-based virtual screening and two rounds of in vitro bacteriostatic experiments were utilized to identify novel small-molecule inhibitors of SecA. Encouragingly, 93 compounds were obtained and two of them (P684-2850, P684-3808) showed strong antimicrobial activities against Liberibacter crescens BT-1 in bacteriostatic experiments. Finally, molecular dynamics simulations were employed to explore the binding modes of the receptor-ligand complexes. Results in MD simulations showed that compound P684-3808 was relatively stable during simulation, while compound P684-2850 left the binding pocket. Compound P684-3808 might be suitable as a lead compound for further development of antimicrobial compounds against SecA of Ca. L. asiaticus.
Collapse
Affiliation(s)
- Zhengfang Zhang
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Quan Han
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Xiongxing Mao
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Jinhua Liu
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Wei Wang
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Dong Li
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Feng Zhou
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| | - Yang Ke
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liu Hu
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, China
| |
Collapse
|
9
|
Irigoyen S, Ramasamy M, Pant S, Niraula P, Bedre R, Gurung M, Rossi D, Laughlin C, Gorman Z, Achor D, Levy A, Kolomiets MV, Sétamou M, Badillo-Vargas IE, Avila CA, Irey MS, Mandadi KK. Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp. Nat Commun 2020; 11:5802. [PMID: 33199718 PMCID: PMC7669877 DOI: 10.1038/s41467-020-19631-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
A major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibacter spp., the presumptive causal agents of citrus greening, potato zebra chip and tomato vein greening diseases. Importantly, we leverage the microbial hairy roots for rapid, reproducible efficacy screening of multiple therapies. We identify six antimicrobial peptides, two plant immune regulators and eight chemicals which inhibit Candidatus Liberibacter spp. in plant tissues. The antimicrobials, either singly or in combination, can be used as near- and long-term therapies to control citrus greening, potato zebra chip and tomato vein greening diseases.
Collapse
Affiliation(s)
- Sonia Irigoyen
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | | | - Shankar Pant
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Agricultural Research Service, US Department of Agriculture, Stillwater, OK, USA
| | - Prakash Niraula
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Meena Gurung
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Denise Rossi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Corinne Laughlin
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Mamoudou Sétamou
- Texas A&M University-Kingsville, Citrus Center, Weslaco, TX, USA
| | - Ismael E Badillo-Vargas
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Carlos A Avila
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
| | | | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA.
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Huang W, Reyes-Caldas P, Mann M, Seifbarghi S, Kahn A, Almeida RPP, Béven L, Heck M, Hogenhout SA, Coaker G. Bacterial Vector-Borne Plant Diseases: Unanswered Questions and Future Directions. MOLECULAR PLANT 2020; 13:1379-1393. [PMID: 32835885 PMCID: PMC7769051 DOI: 10.1016/j.molp.2020.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Vector-borne plant diseases have significant ecological and economic impacts, affecting farm profitability and forest composition throughout the world. Bacterial vector-borne pathogens have evolved sophisticated strategies to interact with their hemipteran insect vectors and plant hosts. These pathogens reside in plant vascular tissue, and their study represents an excellent opportunity to uncover novel biological mechanisms regulating intracellular pathogenesis and to contribute to the control of some of the world's most invasive emerging diseases. In this perspective, we highlight recent advances and major unanswered questions in the realm of bacterial vector-borne disease, focusing on liberibacters, phytoplasmas, spiroplasmas, and Xylella fastidiosa.
Collapse
Affiliation(s)
- Weijie Huang
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paola Reyes-Caldas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Marina Mann
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA
| | - Shirin Seifbarghi
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Alexandra Kahn
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
| | - Laure Béven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE, Villenave d'Ornon 33882 France
| | - Michelle Heck
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA; Boyce Thompson Institute, Ithaca, NY 14853, USA; Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, USDA ARS, Ithaca, NY 14853, USA
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
11
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
12
|
Brandenburg CA, Castro CA, Blacutt AA, Costa EA, Brinton KC, Corral DW, Drozd CL, Roper MC, Rolshausen PE, Maloney KN, Lockner JW. Synthesis of Deoxyradicinin, an Inhibitor of Xylella fastidiosa and Liberibacter crescens, a Culturable Surrogate for Candidatus Liberibacter asiaticus. JOURNAL OF NATURAL PRODUCTS 2020; 83:1810-1816. [PMID: 32510948 DOI: 10.1021/acs.jnatprod.9b01207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pierce's disease of grapevine and citrus huanglongbing are caused by the bacterial pathogens Xylella fastidiosa and Candidatus Liberibacter asiaticus (CLas), respectively. Both pathogens reside within the plant vascular system, occluding water and nutrient transport, leading to a decrease in productivity and fruit marketability and ultimately death of their hosts. Field observations of apparently healthy plants in disease-affected vineyards and groves led to the hypothesis that natural products from endophytes may inhibit these bacterial pathogens. Previously, we showed that the natural product radicinin from Cochliobolus sp. inhibits X. fastidiosa. Herein we describe a chemical synthesis of deoxyradicinin and establish it as an inhibitor of both X. fastidiosa and Liberibacter crescens, a culturable surrogate for CLas. The key to this three-step route is a zinc-mediated enolate C-acylation, which allows for direct introduction of the propenyl side chain without extraneous redox manipulations.
Collapse
Affiliation(s)
- Connor A Brandenburg
- Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106, United States
| | - Claudia A Castro
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, United States
| | - Alex A Blacutt
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, United States
| | | | - Kyler C Brinton
- Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106, United States
| | - Diana W Corral
- Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106, United States
| | - Christopher L Drozd
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, United States
| | - M Caroline Roper
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, United States
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Katherine N Maloney
- Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106, United States
| | - Jonathan W Lockner
- Department of Chemistry, Point Loma Nazarene University, San Diego, California 92106, United States
| |
Collapse
|
13
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
14
|
Andrade MO, Pang Z, Achor DS, Wang H, Yao T, Singer BH, Wang N. The flagella of 'Candidatus Liberibacter asiaticus' and its movement in planta. MOLECULAR PLANT PATHOLOGY 2020; 21:109-123. [PMID: 31721403 PMCID: PMC6913195 DOI: 10.1111/mpp.12884] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Zhiqian Pang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Diann S. Achor
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Han Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Tingshan Yao
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest UniversityChongqing400712People’s Republic of China
| | - Burton H. Singer
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| |
Collapse
|
15
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
16
|
Growth Dynamics and Survival of Liberibacter crescens BT-1, an Important Model Organism for the Citrus Huanglongbing Pathogen " Candidatus Liberibacter asiaticus". Appl Environ Microbiol 2019; 85:AEM.01656-19. [PMID: 31420343 PMCID: PMC6803310 DOI: 10.1128/aem.01656-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/12/2019] [Indexed: 11/20/2022] Open
Abstract
Liberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens. Liberibacter crescens is the only cultured member of its genus, which includes the devastating plant pathogen “Candidatus Liberibacter asiaticus,” associated with citrus greening/Huanglongbing (HLB). L. crescens has a larger genome and greater metabolic flexibility than “Ca. Liberibacter asiaticus” and the other uncultured plant-pathogenic Liberibacter species, and it is currently the best model organism available for these pathogens. L. crescens grows slowly and dies rapidly under current culture protocols and this extreme fastidiousness makes it challenging to study. We have determined that a major cause of rapid death of L. crescens in batch culture is its alkalinization of the medium (to pH 8.5 by the end of logarithmic phase). The majority of this alkalinization is due to consumption of alpha-ketoglutaric acid as its primary carbon source, with a smaller proportion of the pH rise due to NH3 production. Controlling the pH rise with higher buffering capacity and lower starting pH improved recoverability of cells from 10-day cultures by >1,000-fold. We have also performed a detailed analysis of L. crescens growth with total cell numbers calibrated to the optical density and the percentage of live and recoverable bacteria determined over 10-day time courses. We modified L. crescens culture conditions to greatly enhance survival and increase maximum culture density. The similarities between L. crescens and the pathogenic liberibacters make this work relevant to efforts to culture the latter organisms. Our results also suggest that growth-dependent pH alteration that overcomes medium buffering should always be considered when growing fastidious bacteria. IMPORTANCELiberibacter crescens is a bacterium that is closely related to plant pathogens that have caused billions of dollars in crop losses in recent years. Particularly devastating are citrus losses due to citrus greening disease, also known as Huanglongbing, which is caused by “Candidatus Liberibacter asiaticus” and carried by the Asian citrus psyllid. L. crescens is the only close relative of “Ca. Liberibacter asiaticus” that can currently be grown in culture, and it therefore serves as an important model organism for the growth, genetic manipulation, and biological control of the pathogenic species. Here, we show that one of the greatest limitations to L. crescens growth is the sharp increase in alkaline conditions it produces as a consequence of consumption of its preferred nutrient source. In addition to new information about L. crescens growth and metabolism, we provide new guidelines for culture conditions that improve the survival and yield of L. crescens.
Collapse
|
17
|
Jain M, Cai L, Fleites LA, Munoz-Bodnar A, Davis MJ, Gabriel DW. Liberibacter crescens Is a Cultured Surrogate for Functional Genomics of Uncultured Pathogenic ' Candidatus Liberibacter' spp. and Is Naturally Competent for Transformation. PHYTOPATHOLOGY 2019; 109:1811-1819. [PMID: 31090497 DOI: 10.1094/phyto-04-19-0129-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
'Candidatus Liberibacter' spp. are uncultured insect endosymbionts and phloem-limited bacterial plant pathogens associated with diseases ranging from severe to nearly asymptomatic. 'Ca. L. asiaticus', causal agent of Huanglongbing or citrus "greening," and 'Ca. L. solanacearum', causal agent of potato zebra chip disease, respectively threaten citrus and potato production worldwide. Research on both pathogens has been stymied by the inability to culture these agents and to reinoculate into any host. Only a single isolate of a single species of Liberibacter, Liberibacter crescens, has been axenically cultured. L. crescens strain BT-1 is genetically tractable to standard molecular manipulation techniques and has been developed as a surrogate model for functional studies of genes, regulatory elements, promoters, and secreted effectors derived from the uncultured pathogenic Liberibacters. Detailed, step-by-step, and highly reproducible protocols for axenic culture, transformation, and targeted gene knockouts of L. crescens are described. In the course of developing these protocols, we found that L. crescens is also naturally competent for direct uptake and homology-guided chromosomal integration of both linear and circular plasmid DNA. The efficiency of natural transformation was about an order of magnitude higher using circular plasmid DNA compared with linearized fragments. Natural transformation using a replicative plasmid was obtained at a rate of approximately 900 transformants per microgram of plasmid, whereas electroporation using the same plasmid resulted in 6 × 104 transformants. Homology-guided marker interruptions using either natural uptake or electroporation of nonreplicative plasmids yielded 10 to 12 transformation events per microgram of DNA, whereas similar interruptions using linear fragments via natural uptake yielded up to 34 transformation events per microgram of DNA.
Collapse
Affiliation(s)
- M Jain
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L Cai
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - L A Fleites
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - A Munoz-Bodnar
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - M J Davis
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850
| | - D W Gabriel
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| |
Collapse
|
18
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
19
|
Host-free biofilm culture of " Candidatus Liberibacter asiaticus," the bacterium associated with Huanglongbing. Biofilm 2019; 1:100005. [PMID: 33447792 PMCID: PMC7798463 DOI: 10.1016/j.bioflm.2019.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/05/2022] Open
Abstract
Inability to culture the phloem-restricted alpha-proteobacterium “Candidatus Liberibacter asiaticus” (“Ca. L. asiaticus”) or the closely related species (“Candidatus Liberibacter americanus” and “Candidatus Liberibacter africanus”) that are associated with Huanglongbing (HLB) hampers the development of effective long-term control strategies for this devastating disease. Here we report successful establishment and long-term maintenance of host-free “Ca. L. asiaticus” cultures, with the bacterium growing within cultured biofilms derived from infected citrus tissue. The biofilms were grown in a newly designed growth medium under specific conditions. The initial biofilm-based culture has been successfully maintained for over two years and has undergone over a dozen subcultures. Multiple independent cultures have been established and maintained in a biofilm reactor system, opening the door to the development of pure culture of “Ca. L. asiaticus” and the use of genetics-based methods to understand and mitigate the spread of HLB.
Collapse
|
20
|
A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proc Natl Acad Sci U S A 2019; 116:18009-18014. [PMID: 31427509 DOI: 10.1073/pnas.1905149116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Citrus greening disease, also known as huanglongbing (HLB), is the most devastating disease of Citrus worldwide. This incurable disease is caused primarily by the bacterium Candidatus Liberibacter asiaticus and spread by feeding of the Asian Citrus Psyllid, Diaphorina citri Ca L. asiaticus cannot be cultured; its growth is restricted to citrus phloem and the psyllid insect. Management of infected trees includes use of broad-spectrum antibiotics, which have disadvantages. Recent work has sought to identify small molecules that inhibit Ca L. asiaticus transcription regulators, based on a premise that at least some regulators control expression of genes necessary for virulence. We describe a synthetic, high-throughput screening system to identify compounds that inhibit activity of Ca L. asiaticus transcription activators LdtR, RpoH, and VisNR. Our system uses the closely related model bacterium, Sinorhizobium meliloti, as a heterologous host for expression of a Ca L. asiaticus transcription activator, the activity of which is detected through expression of an enhanced green fluorescent protein (EGFP) gene fused to a target promoter. We used this system to screen more than 120,000 compounds for compounds that inhibited regulator activity, but not growth. Our screen identified several dozen compounds that inhibit regulator activity in our assay. This work shows that, in addition to providing a means of characterizing Ca L. asiaticus regulators, an S. meliloti host can be used for preliminary identification of candidate inhibitory molecules.
Collapse
|
21
|
Merfa MV, Pérez-López E, Naranjo E, Jain M, Gabriel DW, De La Fuente L. Progress and Obstacles in Culturing ' Candidatus Liberibacter asiaticus', the Bacterium Associated with Huanglongbing. PHYTOPATHOLOGY 2019; 109:1092-1101. [PMID: 30998129 DOI: 10.1094/phyto-02-19-0051-rvw] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent decades, 'Candidatus Liberibacter spp.' have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is 'Candidatus Liberibacter asiaticus' (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch's postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.
Collapse
Affiliation(s)
- Marcus V Merfa
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Edel Pérez-López
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Eber Naranjo
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Mukesh Jain
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Dean W Gabriel
- 2 Department of Plant Pathology, University of Florida, Gainesville, FL 32611, U.S.A
| | - Leonardo De La Fuente
- 1 Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| |
Collapse
|
22
|
Mendis HC, Ozcan A, Santra S, De La Fuente L. A novel Zn chelate (TSOL) that moves systemically in citrus plants inhibits growth and biofilm formation of bacterial pathogens. PLoS One 2019; 14:e0218900. [PMID: 31233560 PMCID: PMC6590827 DOI: 10.1371/journal.pone.0218900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 11/19/2022] Open
Abstract
Ternary solution (TSOL) is a novel Zn chelate-based systemic antimicrobial formulation designed for treating citrus bacterial pathogens 'Candidatus Liberibacter asiaticus' and Xanthomonas citri subsp. citri. TSOL is a component of MS3T, a novel multifunctional surface/sub-surface/systemic therapeutic formulation. Antimicrobial activity of TSOL was compared with the antimicrobial compound ZnO against X. citri subsp. citri and 'Ca. L. asiaticus' surrogate Liberibacter crescens in batch cultures. X. citri subsp. citri and L. crescens were also introduced into microfluidic chambers, and the inhibitory action of TSOL against biofilm formation was evaluated. The minimum inhibitory concentration of TSOL for both X. citri subsp. citri and L. crescens was 40ppm. TSOL was bactericidal to X. citri subsp. citri and L. crescens above 150 ppm and 200 ppm, respectively. On the contrary, ZnO was more effective as a bactericidal agent against L. crescens than X. citri subsp. citri. TSOL was more effective in controlling growth and biofilm formation of X. citri subsp. citri in batch cultures compared to ZnO. Time-lapse video imaging microscopy showed that biofilm formation of X. citri subsp. citri was inhibited in microfluidic chambers treated with 60 ppm TSOL. TSOL also inhibited further growth of already formed X. citri subsp. citri and L. crescens biofilms in microfluidic chambers. Leaf spraying of TSOL showed higher plant uptake and systemic movement in citrus (Citrus reshni) plants compared to that of ZnO, suggesting that TSOL is a promising antimicrobial compound to control vascular plant pathogens such as 'Ca. L. asiaticus'.
Collapse
Affiliation(s)
- Hajeewaka C. Mendis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States of America
- Department of Chemistry, University of Central Florida, Orlando, FL, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL, United States of America
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States of America
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States of America
| |
Collapse
|